首页> 外文期刊>Knowledge-Based Systems >A case study on a hybrid wind speed forecasting method using BP neural network
【24h】

A case study on a hybrid wind speed forecasting method using BP neural network

机译:基于BP神经网络的混合风速预测方法的案例研究。

获取原文
获取原文并翻译 | 示例

摘要

Wind energy, which is intermittent by nature, can have a significant impact on power grid security, power system operation, and market economics, especially in areas with a high level of wind power penetration. Wind speed forecasting has been a vital part of wind farm planning and the operational planning of power grids with the aim of reducing greenhouse gas emissions. Improving the accuracy of wind speed forecasting algorithms has significant technological and economic impacts on these activities, and significant research efforts have addressed this aim recently. However, there is no single best forecasting algorithm that can be applied to any wind farm due to the fact that wind speed patterns can be very different between wind farms and are usually influenced by many factors that are location-specific and difficult to control. In this paper, we propose a new hybrid wind speed forecasting method based on a back-propagation (BP) neural network and the idea of eliminating seasonal effects from actual wind speed datasets using seasonal exponential adjustment. This method can forecast the daily average wind speed one year ahead with lower mean absolute errors compared to figures obtained without adjustment, as demonstrated by a case study conducted using a wind speed dataset collected from the Minqin area in China from 2001 to 2006.
机译:天生间断的风能会对电网安全,电力系统运行和市场经济产生重大影响,尤其是在风电渗透率很高的地区。风速预测一直是风电场规划和电网运行规划的重要组成部分,旨在减少温室气体排放。提高风速预测算法的准确性对这些活动具有重大的技术和经济影响,并且最近的大量研究工作已针对此目标进行了研究。但是,由于风场之间的风速模式可能非常不同,并且通常受特定于位置且难以控制的许多因素的影响,因此没有适用于任何风电场的最佳预测算法。在本文中,我们提出了一种新的基于反向传播(BP)神经网络的混合风速预测方法,并提出了使用季节性指数调整从实际风速数据集中消除季节性影响的想法。这种方法可以预测一年前的日平均风速,与未经调整的数据相比,平均绝对误差更低,这是通过使用从2001年至2006年从中国民勤地区收集的风速数据集进行的案例研究得到证明的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号