首页> 外文期刊>Knowledge-Based Systems >Graph indexing for large networks: A neighborhood tree-based approach
【24h】

Graph indexing for large networks: A neighborhood tree-based approach

机译:大型网络的图形索引:一种基于邻域树的方法

获取原文
获取原文并翻译 | 示例

摘要

Graphs are used to model complex data objects and their relationships in the real world. Finding occurrences of graph patterns in large graphs is one of the fundamental graph analysis tools used to discover underlying characteristics from these complex networks. In this paper, we propose a new tree-based approach for improving subgraph-matching performance. First, we introduce a new graph indexing mechanism known as Neighborhood Trees (NTree), which records the neighborhood relationships of each vertex in the large graph to filter negative vertices. Second, we decompose a query graph into a set of neighborhood trees and only a subset of candidate trees, which can properly recover the original query graph. In this way, the tree-at-a-time method is used to obtain the matched graphs. Third, we employ a graph query optimizer to determine the neighborhood tree selection order on the basis of the cost evaluation of tree join operations. Experiments on both real and synthetic databases demonstrate that our approach is more efficient than other state-of-the-art indexing methods.
机译:图形用于对复杂数据对象及其在现实世界中的关系进行建模。查找大图中图形模式的出现是用于从这些复杂网络中发现潜在特征的基本图形分析工具之一。在本文中,我们提出了一种新的基于树的方法来改善子图匹配性能。首先,我们引入一种称为邻域树(NTree)的新图索引机制,该机制记录大图中每个顶点的邻域关系以过滤负顶点。其次,我们将查询图分解为一组邻域树,仅分解为候选树的子集,可以正确地恢复原始查询图。这样,一次使用树的方法就可以获取匹配的图。第三,我们使用图查询优化器根据对树连接操作的成本评估来确定邻域树选择顺序。在真实数据库和综合数据库上进行的实验表明,我们的方法比其他最新的索引方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号