首页> 外文期刊>Knowledge-Based Systems >A robust and fast partitioning algorithm for extended target tracking using a Gaussian inverse Wishart PHD filter
【24h】

A robust and fast partitioning algorithm for extended target tracking using a Gaussian inverse Wishart PHD filter

机译:使用高斯逆Wishart PHD滤波器的鲁棒快速分区算法,用于扩展目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

Extended target Gaussian inverse Wishart probability hypothesis density (ET-GIW-PHD) filter is a promising filter. However, the exact filter requires all possible partitions of the current measurement set for updating, which is computationally intractable. In order to limit the number of partitions, we propose a robust and fast partitioning algorithm, called modified Bayesian adaptive resonance theory (MB-ART) partition, based on Bayesian ART neural network architecture. In MB-ART partition, the alternative partitions approximating all possible partitions of the measurement set are generated by the different vigilance parameters, and these parameters are obtained by the bisection method. In addition, MB-ART partition can also solve the cardinality underestimation problem caused by the separating tracks scenario which was investigated by Granstrom et al. [1], since it takes into account the shape information of the different sized extended targets by iteratively updating variance. Simulation results show that our proposed partitioning algorithm can well handle the cardinality underestimation problem caused by the separating tracks scenario and reduce computational burden without losing tracking performance. For a four-target tracking scenario, the ET-GIW-PHD filter using MB-ART partition only requires 8.391 s on average for one Monte Carlo run, while the ET-GIW-PHD filter using combination partition requires 14.834 s. It implies that the proposed MB-ART partition has good application prospects for the real-time extended target tracking (ETT) system. (C) 2015 Elsevier B.V. All rights reserved.
机译:扩展目标高斯逆Wishart概率假设密度(ET-GIW-PHD)滤波器是一种很有前途的滤波器。然而,精确的滤波器需要当前测量集的所有可能分区进行更新,这在计算上是棘手的。为了限制分区的数量,我们基于贝叶斯ART神经网络架构,提出了一种健壮且快速的分区算法,称为改进贝叶斯自适应共振理论(MB-ART)分区。在MB-ART分区中,通过不同的警戒性参数生成近似测量集所有可能分区的替代性分区,并通过二等分方法获得这些参数。另外,MB-ART分区还可以解决由Granstrom等人研究的分离轨道场景引起的基数低估问题。 [1],因为它通过迭代更新方差考虑了不同大小的扩展目标的形状信息。仿真结果表明,本文提出的分区算法能够很好地处理分离轨场景引起的基数低估问题,并在不损失跟踪性能的情况下减轻了计算量。对于四目标跟踪方案,使用MB-ART分区的ET-GIW-PHD过滤器一次Monte Carlo运行平均仅需要8.391 s,而使用组合分区的ET-GIW-PHD过滤器则需要14.834 s。这意味着所提出的MB-ART分区对于实时扩展目标跟踪(ETT)系统具有良好的应用前景。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号