首页> 外文期刊>Knowledge-Based Systems >Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms
【24h】

Optimizing a bi-objective reliable facility location problem with adapted stochastic measures using tuned-parameter multi-objective algorithms

机译:使用调整参数多目标算法,通过调整后的随机措施优化双目标可靠设施选址问题

获取原文
获取原文并翻译 | 示例

摘要

The stochastic process is one the most important tools to overcome uncertainties of supply chain problems. Being a lack of studies on constrained reliable facility location problems (RFLP) with multiple capacity levels, this paper develops a bi-objective RFLP with multiple capacity levels in a three echelon supply chain management while there is a constraint on the coverage levels. Moreover, there is a provider-side uncertainty for distribution-centers (DCs). The aim of this paper is to find a near-optimal solution including suitable locations of DCs and plants, the fraction of satisfied customer demands, and the fraction of items sent to DCs to minimize the total cost and to maximize fill rate, simultaneously. As the proposed model belongs to NP-Hard problems, a meta-heuristic algorithm called multi-objective biogeography-based optimization (MOBBO) is employed to find a near-optimal Pareto solution. Since there is no benchmark in the literature to compare provided solutions, a non-dominated ranking genetic algorithm (NRGA) and a multi objective simulated annealing (MOSA) are used to verify the solution obtained by MOBBO while a two-stage stochastic programming (2-SSP) is employed to capture randomness of DCs. This paper uses the adapted concepts of expected value of perfect information (EVPI) and the value of stochastic solution (VSS) in order to validate 2-SSP. Moreover, the parameters of algorithms are tuned by the response surface methodology (RSM) in the design of experiments. Besides, an exact method, called branch-and-bound method via GAMS optimization software, is used to compare lower and upper bounds of Pareto fronts to optimize two single-objective problems separately. (C) 2015 Elsevier B.V. All rights reserved.
机译:随机过程是克服供应链问题不确定性的最重要工具之一。由于缺乏对具有多个能力水平的受限可靠设施选址问题(RFLP)的研究,本文在三级供应链管理中开发了一个具有多个能力水平的双目标RFLP,同时覆盖范围受到了限制。此外,配送中心(DC)在提供商方面存在不确定性。本文的目的是找到一种接近最佳的解决方案,包括配送中心和工厂的合适位置,满足客户需求的比例以及发送给配送中心的项目比例,以同时降低总成本和最大化填充率。由于所提出的模型属于NP-Hard问题,因此采用了一种基于启发式算法的多目标基于生物地理的优化(MOBBO)来寻找接近最优的Pareto解。由于文献中没有基准可用来比较提供的解决方案,因此在进行两阶段随机规划时,使用非主导排序遗传算法(NRGA)和多目标模拟退火(MOSA)来验证由MOBBO获得的解决方案(2 -SSP)用于捕获DC的随机性。为了验证2-SSP,本文采用了完美信息期望值(EVPI)和随机解值(VSS)的适应概念。此外,在实验设计中,通过响应面方法(RSM)调整算法的参数。此外,还使用了一种精确的方法,即通过GAMS优化软件进行的分支定界方法,比较了Pareto前沿的上下边界,以分别优化两个单目标问题。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号