首页> 外文期刊>Knowledge-Based Systems >Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow
【24h】

Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow

机译:具有FOA算法的季节性SVR,可对每月入境游客流量进行单步和多步提前预测

获取原文
获取原文并翻译 | 示例

摘要

Accurate monthly inbound tourist flow forecasting can provide the reliable guidance for better tourism planning and administration. However, it has been found that the monthly inbound tourist flow demonstrates a complex nonlinear characteristic and an obvious seasonal tendency. Support vector regression (SVR) has been widely applied to handle nonlinear time series prediction, but it suffers from the key parameters selection and the influence of seasonal tendency. This paper proposes a novel approach, namely SFOASVR, which hybridizes SVR model with fruit fly optimization algorithm (FOA) and the seasonal index adjustment to forecast monthly tourist flow. Besides, in order to comprehensively evaluate the forecasting performance of the hybrid model, two kinds of forecasting horizons, namely single-step-ahead and multi-step-ahead, are used. In addition, the inbound tourist flow to mainland China from January 2000 to December 2013 is used as data set The results show that the proposed hybrid SFOASVR approach is a viable option for tourist flow forecasting applications. (C) 2016 Elsevier B.V. All rights reserved.
机译:准确的每月入境游客流量预测可以为更好的旅游计划和管理提供可靠的指导。然而,已经发现,每月入境游客流量表现出复杂的非线性特征和明显的季节性趋势。支持向量回归(SVR)已被广泛用于处理非线性时间序列预测,但是它受关键参数选择和季节趋势的影响。本文提出了一种新的方法,即SFOASVR,它将SVR模型与果蝇优化算法(FOA)和季节指数调整相结合,以预测月游客流量。此外,为了全面评估混合模型的预测性能,使用了单步超前和多步超前两种预测视野。此外,以2000年1月至2013年12月进入中国大陆的入境游客流量为数据集。结果表明,提出的混合SFOASVR方法是游客流量预测应用的可行选择。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号