首页> 外文期刊>Knowledge-Based Systems >MOEA/D-ARA plus SBX: A new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover
【24h】

MOEA/D-ARA plus SBX: A new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover

机译:MOEA / D-ARA plus SBX:一种新的多目标进化算法,基于人工雨滴算法和模拟二进制交叉分解算法

获取原文
获取原文并翻译 | 示例

摘要

In the field of optimization computation, there has been a growing interest in applying intelligent algorithms to solve multi-objective optimization problems (MOPs). This paper focuses mainly on the multi objective evolutionary algorithm based on decomposition, MOEA/D for short, which offers a practical general algorithmic framework of evolutionary multi-objective optimization, and has been achieved great success for a wide range of MOPs. Like most other algorithms, however, MOEA/D has its limitations, which are reflected in three aspects: the problem of balancing diversity and convergence, non-uniform distribution of the Pareto front (PF), and weak convergence of the algorithm. To alleviate these limitations, a new combination of the artificial raindrop algorithm (ARA) and a simulated binary crossover (SBX) operator is first integrated into the framework of MOEA/D to balance the convergence and diversity. Thus, our proposed approach is called MOEA/D with ARA and SBX (MOEA/D-ARA+SBX). On the other hand, the raindrop pool in ARA is further extended to an external elitist archive, which retains only non-dominated solutions and discards all others. In addition, the k-nearest neighbors approach is introduced to prune away redundant non-dominated solutions. In such a way, a Pareto approximate subset with good distribution to the true PF may be achieved. Based on the relevant mathematical theory and some assumptions, it is proven that MOEA/D-ARA+SBX can converge to the true PF with probability one. For performance evaluation and comparison purposes, the proposed approach was applied to 44 multi-objective test problems with all types of Pareto set shape, and compared with 16 other versions of MOEA/D. The experimental results indicate its advantages over other approaches. (C) 2016 Elsevier B.V. All rights reserved.
机译:在优化计算领域,人们越来越关注将智能算法应用于解决多目标优化问题(MOP)。本文主要研究基于分解的多目标进化算法,简称MOEA / D,它为进化的多目标优化提供了一种实用的通用算法框架,并在广泛的MOP中取得了巨大的成功。但是,与大多数其他算法一样,MOEA / D也有其局限性,这体现在三个方面:平衡多样性和收敛性,帕累托阵线(PF)的不均匀分布以及算法的弱收敛性。为了减轻这些限制,首先将人工雨滴算法(ARA)和模拟二进制交叉(SBX)运算符的新组合集成到MOEA / D框架中,以平衡收敛和多样性。因此,我们提出的方法称为具有ARA和SBX的MOEA / D(MOEA / D-ARA + SBX)。另一方面,ARA中的雨滴池进一步扩展到外部精英档案库,该档案库仅保留非主要解决方案,而丢弃所有其他解决方案。另外,引入了k最近邻方法来修剪冗余的非支配解决方案。以这种方式,可以实现对真实PF具有良好分布的帕累托近似子集。基于相关的数学理论和一些假设,证明MOEA / D-ARA + SBX可以概率为1收敛到真实PF。为了进行性能评估和比较,将所提出的方法应用于所有类型的帕累托集合形状的44个多目标测试问题,并与其他16种版本的MOEA / D进行了比较。实验结果表明它比其他方法更具优势。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号