首页> 外文期刊>Knowledge-Based Systems >Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems
【24h】

Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems

机译:一类多目标双层规划问题的基于分解的多目标差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the multiobjective bilevel programming problem (MOBLPP) with multiple objective functions at the upper level and a single objective function at the lower level. By adopting the Karush-Kuhn-Tucker (KKT) optimality conditions to the lower level optimization, the original multiobjective bilevel problem can be transformed into a multiobjective single-level optimization problem involving the complementarity constraints. In order to handle the complementarity constraints, an existing smoothing technique for mathematical programs with equilibrium constraints is applied. Thus, a multiobjective single-level nonlinear programming problem is formalized. For solving this multiobjective single-level optimization problem; the scalarization approaches based on weighted sum approach and Tchebycheff approach are used respectively, and a constrained multiobjective differential evolution algorithm based on decomposition is presented. Some illustrative numerical examples including linear and nonlinear versions of MOBLPPs with multiple objectives at the upper level are tested to show the effectiveness of the proposed approach. Besides, NSGA-II is utilized to solve this multiobjective single-level optimization model. The comparative results among weighted sum approach, Tchebycheff approach, and NSGA-II are provided. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文考虑了多目标双层规划问题(MOBLPP),该问题具有较高级别的多个目标函数和较低级别的单个目标函数。通过将Karush-Kuhn-Tucker(KKT)最优性条件应用于较低级别的优化,可以将原始的多目标双级问题转化为涉及互补约束的多目标单级优化问题。为了处理互补性约束,对具有平衡约束的数学程序应用现有的平滑技术。因此,形式化了多目标单级非线性规划问题。用于解决此多目标单级优化问题;分别使用了基于加权和法和Tchebycheff法的标量化方法,提出了一种基于分解的约束多目标差分进化算法。测试了一些说明性的数值示例,包括在较高级别具有多个目标的MOBLPP的线性和非线性版本,以证明所提出方法的有效性。此外,利用NSGA-II解决了该多目标单级优化模型。提供了加权和,Tchebycheff方法和NSGA-II的比较结果。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号