首页> 外文期刊>Knowledge-Based Systems >Re-scale AdaBoost for attack detection in collaborative filtering recommender systems
【24h】

Re-scale AdaBoost for attack detection in collaborative filtering recommender systems

机译:重新缩放AdaBoost以便在协作过滤推荐系统中检测攻击

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering recommender systems (CFRSs) are the key components of successful E-commerce systems. However, CFRSs are highly vulnerable to "shilling" attacks or "profile injection" attacks due to its openness. Since the size of attackers is usually far smaller than genuine users, conventional supervised learning based detection methods could be too "dull" to handle such imbalanced classification. In this paper, we improve detection performance from following two aspects. Firstly, we extract well-designed features from user profiles based on the statistical properties of the diverse attack models, making hard detection scenarios become easier to perform. Then, refer to the general idea of re-scale Boosting (RBoosting) and AdaBoost, we apply a variant of AdaBoost, called the re-scale AdaBoost (RAdaBoost) as our detection method based on the extracted features. Finally, a series of experiments on the MovieLens-100K dataset are conducted to demonstrate the outperformance of RAdaBoost over other competing techniques such as SVM, kNN and AdaBoost. (C) 2016 Elsevier B.V. All rights reserved.
机译:协作过滤推荐系统(CFRS)是成功的电子商务系统的关键组件。但是,由于CFRS的开放性,因此极易遭受“先令”攻击或“轮廓注入”攻击。由于攻击者的规模通常比真正的用户小得多,因此传统的基于监督学习的检测方法可能过于“沉闷”,无法处理这种不平衡的分类。本文从以下两个方面提高检测性能。首先,我们根据各种攻击模型的统计属性从用户配置文件中提取精心设计的功能,从而使难于检测的场景变得更易于执行。然后,参考重新缩放Boosting(RBoosting)和AdaBoost的一般思想,我们基于提取的特征应用AdaBoost的变体,称为重新缩放AdaBoost(RAdaBoost)作为我们的检测方法。最后,在MovieLens-100K数据集上进行了一系列实验,以证明RAdaBoost优于其他竞争技术(例如SVM,kNN和AdaBoost)。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号