首页> 外文期刊>Knowledge-Based Systems >Multi-modal sliding window-based support vector regression for predicting plant water stress
【24h】

Multi-modal sliding window-based support vector regression for predicting plant water stress

机译:基于多模态滑动窗口的支持向量回归预测植物水分胁迫

获取原文
获取原文并翻译 | 示例

摘要

Information communication technology (ICT) is required in the field of agriculture to solve problems arising because of the aging of farmers and shortage of heirs. In particular, environmental sensors and cameras are widely used in existing agricultural support systems for easy data collection. Although the traditional purpose of these systems is naive monitoring and controlling of the environment, the propagation of advanced cultivation is now expected by applying the data to machine learning and data mining technologies. Therefore, we propose a novel multi-modal sliding window-based support vector regression (multi-modal SW-SVR) method for accurate prediction of complicated water stress, which is a plant status, from two data types, namely environmental and plant image data. The proposed method includes two methodologies, SW-SVR and deep neural network (DNN) as a multi-modal feature extractor for SW-SVR. SW-SVR, which we proposed previously, is a suitable learning method for data with time-dependent characteristics, such as plant status. Moreover, we propose a new image feature, remarkable moving objects detected by adjacent optical flow (ROAF), to enable DNN to extract essential features easily for predicting water stress. Compared with existing regression models and features, the proposed multi-modal SW-SVR with ROAF demonstrates more precise and stable water stress prediction. (C) 2017 The Authors. Published by Elsevier B.V.
机译:农业领域需要信息通信技术(ICT),以解决由于农民老龄化和继承人短缺而引起的问题。特别是,环境传感器和摄像机广泛用于现有的农业支持系统中,以方便数据收集。尽管这些系统的传统目的是对环境进行幼稚的监视和控制,但是现在可以通过将数据应用于机器学习和数据挖掘技术来实现高级栽培的传播。因此,我们提出了一种新的基于多模式滑动窗口的支持向量回归(multi-modal SW-SVR)方法,用于从环境和植物图像数据这两种数据类型中准确预测作为植物状态的复杂水分胁迫。 。所提出的方法包括SW-SVR和深度神经网络(DNN)这两种方法,作为SW-SVR的多模式特征提取器。我们之前提出的SW-SVR是一种适合于具有时间依赖性的数据(例如工厂状态)的学习方法。此外,我们提出了一种新的图像特征,即通过相邻光流(ROAF)检测到的显着运动物体,以使DNN能够轻松提取基本特征以预测水压力。与现有的回归模型和功能相比,拟议的带有ROAF的多模式SW-SVR可以显示出更精确和稳定的水分胁迫预测。 (C)2017作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号