首页> 外文期刊>Knowledge-Based Systems >Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning
【24h】

Cooperative two-engine multi-objective bee foraging algorithm with reinforcement learning

机译:强化学习的协同两引擎多目标蜜蜂觅食算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel multi-objective bee foraging algorithm (MOBFA) based on two-engine co-evolution mechanism for solving multi-objective optimization problems. The proposed MOBFA aims to handle the convergence and diversity separately via evolving two cooperative search engines with different evolution rules. Specifically, in the colony-level interaction, the primary concept is to first assign two different performance evaluation principles (i.e., Pareto-based measure and indicator-based measure) to the two engines for evolving each archive respectively, and then use the comprehensive learning mechanism over the two archives to boost the population diversity. In the individual-level foraging, the neighbor-discount-information (NDI) learning based on reinforcement learning (RL) is integrated into the single-objective searching to adjust the flight trajectories of foraging bee. By testing on a suit of benchmark functions, the proposed MOBFA is verified experimentally to be superior or at least comparable to its competitors in terms of two commonly used metrics IGD and SPREAD. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了一种基于双引擎协同进化机制的多目标蜜蜂觅食算法(MOBFA),用于求解多目标优化问题。拟议的MOBFA旨在通过发展两个具有不同进化规则的合作搜索引擎分别处理融合和多样性。具体而言,在群体级交互中,主要概念是首先为两个引擎分别分配两个不同的绩效评估原则(即基于帕累托的度量和基于指标的度量),以使每个档案得以发展,然后使用综合学习两种档案的机制,以促进人口多样性。在个人层面的觅食中,基于强化学习(RL)的邻居折扣信息(NDI)学习被整合到单目标搜索中,以调整觅食蜂的飞行轨迹。通过对一套基准功能进行测试,就两种常用指标IGD和SPREAD而言,通过实验证明了拟议的MOBFA优于或至少可与竞争对手匹敌。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第1期|278-293|共16页
  • 作者单位

    Northeastern Univ, Coll Software, Shenyang, Liaoning, Peoples R China;

    Shaanxi Normal Univ, Coll Sch Comp Sci, Xian, Shaanxi, Peoples R China;

    Northeastern Univ, Coll Software, Shenyang, Liaoning, Peoples R China;

    Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China;

    Cent S Univ, Coll Informat Sci & Engn, Changsha, Hunan, Peoples R China;

    Shenyang Normal Univ, Coll Phys Sci & Technol, Shenyang 110034, Liaoning, Peoples R China;

    Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bee foraging; Multi-objective optimization; Indicator; Pareto;

    机译:蜜蜂觅食;多目标优化;指标;帕累托;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号