机译:强化学习的协同两引擎多目标蜜蜂觅食算法
Northeastern Univ, Coll Software, Shenyang, Liaoning, Peoples R China;
Shaanxi Normal Univ, Coll Sch Comp Sci, Xian, Shaanxi, Peoples R China;
Northeastern Univ, Coll Software, Shenyang, Liaoning, Peoples R China;
Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China;
Cent S Univ, Coll Informat Sci & Engn, Changsha, Hunan, Peoples R China;
Shenyang Normal Univ, Coll Phys Sci & Technol, Shenyang 110034, Liaoning, Peoples R China;
Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China;
Bee foraging; Multi-objective optimization; Indicator; Pareto;
机译:觅食决策作为多武装强盗问题:应用强化学习算法觅食数据
机译:用于多目标优化的多蜂群觅食算法
机译:一种新颖的多目标优化算法:人工蜂群和细菌觅食
机译:觅食蜜蜂加固学习的演变:风险厌恶行为的简单解释
机译:协作式多机器人觅食中的层次强化学习和社会认知。
机译:具有序列依赖建立时间和学习效果的多目标单机群调度问题的混合帕累托人工蜂群算法
机译:多目标RFID网络规划的协同人工蜂群算法