首页> 外文期刊>Knowledge-Based Systems >CTF-ARA: An adaptive method for POI recommendation based on check-in and temporal features
【24h】

CTF-ARA: An adaptive method for POI recommendation based on check-in and temporal features

机译:CTF-ARA:一种基于签到和时间特征的POI推荐自适应方法

获取原文
获取原文并翻译 | 示例

摘要

Point-of-interest (POI) recommendation in location-based social networks (LBSNs) can solve the problem of information overload by providing personalized recommendation service, which is of great value to both users and businesses. However, the existing POI recommendation methods have not considered the effect of diversity features in check-in data, thus leading to unsatisfactory recommendation results. To address this issue, in this paper we propose an adaptive POI recommendation method (called CTF-ARA) by combining check-in and temporal features with user-based collaborative filtering. We first use probability statistical analysis method to mine user activity and similarity features of check-in behavior, variability and consecutiveness features of temporal factor. Then we use K-means algorithm to divide the users into active users and inactive users, and devise a similar user filtering algorithm based on the proposed features. Finally, we utilize cosine similarity of different time slots smoothing technique to make POI recommendation, which can operate adaptively according to the activity of user. The experimental results on Foursquare and Gowalla datasets show that LIF-ARA can improve precision and recall compared to other POI recommendation methods. (C) 2017 Elsevier B.V. All rights reserved.
机译:基于位置的社交网络(LBSN)中的兴趣点(POI)推荐可以通过提供个性化推荐服务来解决信息过载的问题,这对用户和企业都具有巨大的价值。但是,现有的POI推荐方法未考虑签到数据中多样性特征的影响,因此导致推荐结果不理想。为了解决这个问题,在本文中,我们提出了一种通过将签入和时间特征与基于用户的协作过滤相结合的自适应POI推荐方法(称为CTF-ARA)。我们首先使用概率统计分析方法来挖掘用户活动和签到行为的相似性特征,时间因素的变异性和连续性特征。然后使用K-means算法将用户划分为活跃用户和非活跃用户,并根据提出的特征设计出一种相似的用户过滤算法。最后,我们利用不同时隙平滑技术的余弦相似度进行POI推荐,可以根据用户的活动进行自适应操作。在Foursquare和Gowalla数据集上的实验结果表明,与其他POI推荐方法相比,LIF-ARA可以提高精度和召回率。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第15期|59-70|共12页
  • 作者单位

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe, Qinhuangdao 066004, Peoples R China|Yanshan Univ, Sch Liren, Qinhuangdao 066004, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe, Qinhuangdao 066004, Peoples R China;

    Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China|Key Lab Comp Virtual Technol & Syst Integrat Hebe, Qinhuangdao 066004, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Social networks; Recommender systems; Adaptive recommendation algorithm; User activity; Collaborative filtering; Temporal features;

    机译:社交网络;推荐系统;自适应推荐算法;用户活动;协作过滤;时空特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号