首页> 外文期刊>Knowledge-Based Systems >Robust twin support vector regression via second-order cone programming
【24h】

Robust twin support vector regression via second-order cone programming

机译:通过二阶锥规划进行稳健的双支撑向量回归

获取原文
获取原文并翻译 | 示例

摘要

Twin Support Vector Regression is an effective machine learning strategy, which splits the predictive task into two small problems, gaining in both efficiency and predictive performance. In this paper, a novel extension for twin Support Vector Regression is presented. The proposal is based on robust optimization, conferring robustness to the predictive task by dealing effectively with uncertainty. The method is first developed as a linear one, and then, subsequently extended to a kernel-based formulation. Our approach accomplishes the best performance on benchmark datasets compared to alternative methods, such as linear regression, support vector regression, and twin support vector regression. This gain in performance demonstrates the virtues of robust optimization on reducing the risk of overfitting, and generalizing the training patterns well with reduced complexity. (C) 2018 Elsevier B.V. All rights reserved.
机译:双支持向量回归是一种有效的机器学习策略,它将预测任务分为两个小问题,既提高了效率,又提高了预测性能。在本文中,提出了一种新的双支撑向量回归扩展。该建议基于鲁棒性优化,通过有效处理不确定性为预测任务赋予鲁棒性。该方法首先发展为线性方法,然后扩展为基于核的公式。与线性回归,支持向量回归和双支持向量回归等替代方法相比,我们的方法在基准数据集上可实现最佳性能。这种性能提升证明了进行鲁棒优化的好处在于可以降低过度拟合的风险,并以降低的复杂性很好地概括训练模式。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号