首页> 外文期刊>Knowledge-Based Systems >Finding strongly connected components of simple digraphs based on generalized rough sets theory
【24h】

Finding strongly connected components of simple digraphs based on generalized rough sets theory

机译:基于广义粗糙集理论寻找简单图的强连通成分

获取原文
获取原文并翻译 | 示例

摘要

Rough sets theory is not good at discovering knowledge from digraphs which is a kind of relational data. In order to solve this problem, we Introduce binary relations derived from simple digraphs and propose a new concept of k-step R-related set in the framework of generalized rough sets theory. In addition, we first investigate the relationships between generalized rough sets theory and graph theory on the basis of mutual representation between binary relations and digraphs. The relationships established in this work make it possible to use generalized rough sets theory to find strongly connected components of simple directed graphs, which previously can be solved only by graph algorithms. An algorithm is correspondingly developed based on the above works, especially k-step R-related set. A series of experiments are carried out to test the proposed algorithm. The results show that our algorithm provides comparable performance to the classical Tarjan algorithm. In addition, the proposed algorithm can be implemented in parallel. And its parallel performance is comparable to existing state-of-the-art parallel algorithms. (C) 2018 Elsevier B.V. All rights reserved.
机译:粗糙集理论不能很好地从图上发现知识,而图是一种关系数据。为了解决这个问题,我们引入了从简单的有向图得到的二元关系,并在广义粗糙集理论的框架下提出了一个新的k步R相关集的概念。另外,我们首先在二元关系和有向图之间的相互表示的基础上研究广义粗糙集理论和图论之间的关系。在这项工作中建立的关系使得可以使用广义粗糙集理论来找到简单的有向图的强连通组件,而这些以前只能通过图算法来解决。基于以上工作,相应地开发了一种算法,特别是k步R相关集。进行了一系列实验以测试该算法。结果表明,我们的算法提供了与经典Tarjan算法相当的性能。另外,所提出的算法可以并行实现。而且其并行性能可与现有的最新并行算法相媲美。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号