首页> 外文期刊>Knowledge-Based Systems >Combining granular computing technique with deep learning for service planning under social manufacturing contexts
【24h】

Combining granular computing technique with deep learning for service planning under social manufacturing contexts

机译:在社交制造环境下将颗粒计算技术与深度学习相结合以进行服务计划

获取原文
获取原文并翻译 | 示例

摘要

As an essential element in the overall designing of a service system, service planning plays an important role in improving final service quality and user experience. Service planning is a customer-oriented approach that facilitates the translation of customer requirements into activity process features or engineering characteristics. The trend is towards learning decision-support knowledge from massive service case data to facilitate service planning. However, when learning from imbalanced data, existing methods have poor predictive ability to identify minority patterns. To improve the quality and efficiency of the service planning, an innovative approach based on the combination of granular computing and deep learning are presented. It employs an inductive paradigm, clustering examples in a best granularity, sampling and refining into a more balanced example set, and feeding them into a deep learning model. The proposed approach can mine the planning patterns between the customer requirements and service process features, thereby facilitating knowledge transferring in service planning under the social manufacturing context. (C) 2017 Elsevier B.V. All rights reserved.
机译:作为服务系统整体设计的重要组成部分,服务计划在提高最终服务质量和用户体验方面起着重要作用。服务计划是一种以客户为中心的方法,可促进将客户需求转换为活动过程特征或工程特征。趋势是从大量服务案例数据中学习决策支持知识,以促进服务计划。但是,从不平衡数据中学习时,现有方法无法识别少数群体模式。为了提高服务计划的质量和效率,提出了一种基于颗粒计算和深度学习相结合的创新方法。它采用归纳范式,以最佳的粒度对示例进行聚类,对示例集进行采样和细化,然后将其精炼为更均衡的示例集,然后将其馈入深度学习模型。所提出的方法可以挖掘客户需求和服务过程特征之间的计划模式,从而促进社会制造环境下服务计划中的知识转移。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号