首页> 外文期刊>Knowledge-Based Systems >Extracting non-redundant correlated purchase behaviors by utility measure
【24h】

Extracting non-redundant correlated purchase behaviors by utility measure

机译:通过效用度量提取非冗余的相关购买行为

获取原文
获取原文并翻译 | 示例

摘要

From web search and data mining, users' click and purchase behaviors contain valuable information, thus numerous approaches have been proposed to identify embedded useful knowledge from them. In these real-life situations, each user may perform the same action/event multiple times, and multiple accessed events product different profit. Many utility-oriented data mining approaches thus have been extensively studied. Previous studies have the limitation that the overall utility of traditional pattern is limited since they rarely consider the inherent correlation. For example, from the purchase behavior, the low-utility patterns sometimes with a very high-utility pattern will be considered as a valuable pattern even if this behavior may be not highly correlated. A more intelligent framework that provides non-redundant and correlated behavior based on utility measure is thus desired. In this paper, we first present a novel method to extract non-redundant correlated purchase behaviors considering the utility and correlation factors. The high qualified patterns can be derived with high profit and strong correlation, which can lead to higher recall and reveal better precision. In the proposed projection-based approach, an efficient projection mechanism and a sorted downward closure property are developed to reduce the database size. Several pruning strategies are further developed to efficiently and effectively discover the desired patterns. An extensive experimental study showed that the novel non-redundant correlated high-utility pattern has more effectiveness than the previous knowledge representation. Moreover, the proposed algorithm is efficient in terms of execution time and memory usage. (C) Elsevier B.V. All rights reserved.
机译:从网络搜索和数据挖掘中,用户的点击和购买行为包含有价值的信息,因此提出了许多方法来从中识别出嵌入式有用的知识。在这些现实情况下,每个用户可能多次执行相同的操作/事件,并且多次访问事件会产生不同的利润。因此,已经对许多面向实用程序的数据挖掘方法进行了广泛的研究。先前的研究存在局限性,因为传统模式的整体效用有限,因为它们很少考虑内在的相关性。例如,从购买行为来看,有时具有很高效用模式的低效用模式将被视为有价值的模式,即使这种行为可能没有高度相关性。因此,需要一种更智能的框架,该框架基于效用度量提供非冗余和相关的行为。在本文中,我们首先提出一种考虑效用和相关因素的非冗余关联购买行为的新方法。高质量的图案可以得到高利润和强相关性,这可以导致更高的召回率和更好的精度。在提出的基于投影的方法中,开发了一种有效的投影机制和一种排序的向下关闭属性以减小数据库大小。进一步开发了几种修剪策略,以有效地发现所需的模式。广泛的实验研究表明,新颖的非冗余相关高实用性模式比以前的知识表示具有更高的有效性。而且,所提出的算法在执行时间和存储器使用方面是有效的。 (C)Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号