首页> 外文期刊>Knowledge-Based Systems >Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks
【24h】

Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks

机译:通过在单向社交网络中提取用户的社交主题和兴趣主题来改善用户推荐

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of population on social networks, people are confronted with information overload problem. This clearly makes filtering the targeted users a demanding and key research task. Unidirectional social networks are the scenarios where users provide limited follow or not binary features. Related works prefer to utilize these follower-followee relations for recommendation. However, a major problem of these methods is that they assume every follower-followee user pairs are equally likely, and this leads to the coarse user following preferences inferring. Intuitively, a user's adoption of others as followees may be motivated by her interests as well as social connections, hence a good recommender should be able to separate the two situations and take both factors into account for better recommendation results. In this regard, we propose a new user recommendation framework namely UIS-MF in this work. UIS-MF can well capture user preferences by involving both interest and social factors in prediction, and targeted to recommend Top-N followees who have similar interest and close social connection relevant to a target user. Specifically, we first present a unified probabilistic topic model on follower-followee relations, namely UIS-LDA, and it employs Generalized Polya Urn (GPU) models on mutual-following relations for discovering interest topics and social topics of users. Next we propose a community-based method for user recommendation, it organizes social communities and interest communities based on the estimation of topics obtained from UIS-LDA, and then performs Matrix Factorization (MF) method on each community to generate N most likely followees for individual user. Systematic experiments on Twitter, Sina Weibo and Epinions datasets have not only revealed the significant effect of our UIS-LDA model for the extraction of interest and social topics of users in improving recommending accuracy, but also demonstrated the advantage of our proposed recommendation framework over competitive baselines by large margins. (C) 2017 Elsevier B.V. All rights reserved.
机译:随着社交网络上人口的快速增长,人们面临着信息过载的问题。显然,这使筛选目标用户成为一项艰巨而关键的研究任务。单向社交网络是用户提供有限关注或不提供二进制功能的场景。相关作品更倾向于利用这些追随者-亲戚关系进行推荐。但是,这些方法的主要问题是,它们假定每个跟随者/跟随者用户对都是同等可能的,这导致遵循偏好推断的粗略用户。直觉上,用户采用其他人作为追随者可能是出于她的兴趣以及社交关系的动机,因此,好的推荐者应该能够将两种情况分开,并考虑两个因素,以获得更好的推荐结果。在这方面,我们在这项工作中提出了一个新的用户推荐框架,即UIS-MF。 UIS-MF通过在预测中同时涉及兴趣和社交因素,可以很好地捕获用户的偏好,并针对具有相似兴趣和与目标用户相关的紧密社交联系的Top-N推荐对象。具体来说,我们首先提出一个关于追随者与追随者关系的统一概率主题模型,即UIS-LDA,并在相互追随关系中采用广义Polya Urn(GPU)模型,以发现用户的关注话题和社交话题。接下来,我们提出一种基于社区的用户推荐方法,该方法基于从UIS-LDA获得的主题估计来组织社交社区和兴趣社区,然后对每个社区执行矩阵分解(MF)方法以生成N个最可能的关注者个人用户。在Twitter,新浪微博和Epinions数据集上进行的系统实验不仅揭示了我们的UIS-LDA模型对于提取用户的兴趣和社交主题在提高推荐准确性方面的显著作用,而且还展示了我们提出的推荐框架优于竞争者的优势。基线大幅增加。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号