首页> 外文期刊>Journal of web semantics: >Relaxing relationship queries on graph data
【24h】

Relaxing relationship queries on graph data

机译:放宽关系图数据上的疑问

获取原文
获取原文并翻译 | 示例

摘要

In many domains we have witnessed the need to search a large entity-relation graph for direct and indirect relationships between a set of entities specified in a query. A search result, called a semantic association (SA), is typically a compact (e.g., diameter-constrained) connected subgraph containing all the query entities. For this problem of SA search, efficient algorithms exist but will return empty results if some query entities are distant in the graph. To reduce the occurrence of failing query and provide alternative results, we study the problem of query relaxation in the context of SA search. Simply relaxing the compactness constraint will sacrifice the compactness of an SA, and more importantly, may lead to performance issues and be impracticable. Instead, we focus on removing the smallest number of entities from the original failing query, to form a maximum successful sub-query which minimizes the loss of result quality caused by relaxation. We prove that verifying the success of a sub-query turns into finding an entity (called a certificate) that satisfies a distance-based condition about the query entities. To efficiently find a certificate of the success of a maximum sub-query, we propose a best-first search algorithm that leverages distance-based estimation to effectively prune the search space. We further improve its performance by adding two fine-grained heuristics: one based on degree and the other based on distance. Extensive experiments over popular RDF datasets demonstrate the efficiency of our algorithm, which is more scalable than baselines.
机译:在许多域中,我们目睹了需要在查询中指定的一组实体之间进行直接和间接关系搜索大实体关系图。称为语义关联(SA)的搜索结果通常是包含所有查询实体的紧凑(例如,直径约束)连接的子图。对于SA搜索问题,存在高效的算法,但如果某些查询实体在图中仍然存在,则会返回空结果。为了减少错误查询的发生并提供替代结果,我们研究SA搜索背景下的查询放松问题。简单地放松紧凑型约束将牺牲SA的紧凑性,更重要的是,可能导致性能问题并不切实际。相反,我们专注于从原始失败查询中删除最小数量的实体,形成最大的成功子查询,从而最大限度地减少由松弛引起的结果质量损失。我们证明验证子查询的成功变为查找满足基于距离实体条件的实体(称为证书)。为了有效地找到最大子查询的成功证书,我们提出了一个最佳的搜索算法,利用基于距离的估计来有效地修剪搜索空间。我们通过添加两个细粒度的启发式方法来进一步提高其性能:基于距离和另一个基于距离的细粒度。对流行的RDF数据集进行了广泛的实验,证明了我们的算法的效率,比基线更可扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号