首页> 外文期刊>Journal of web semantics: >Relevance feedback between hypertext and Semantic Web search: Frameworks and evaluation
【24h】

Relevance feedback between hypertext and Semantic Web search: Frameworks and evaluation

机译:超文本和语义Web搜索之间的相关性反馈:框架和评估

获取原文
获取原文并翻译 | 示例

摘要

We investigate the possibility of using Semantic Web data to improve hypertext Web search. In particular, we use relevance feedback to create a 'virtuous cycle' between data gathered from the Semantic Web of Linked Data and web-pages gathered from the hypertext Web. Previous approaches have generally considered the searching over the Semantic Web and hypertext Web to be entirely disparate, indexing, and searching over different domains. While relevance feedback has traditionally improved information retrieval performance, relevance feedback is normally used to improve rankings over a single data-set. Our novel approach is to use relevance feedback from hypertext Web results to improve Semantic Web search, and results from the Semantic Web to improve the retrieval of hypertext Web data. In both cases, an evaluation is performed based on certain kinds of informational queries (abstract concepts, people, and places) selected from a real-life query log and checked by human judges. We evaluate our work over a wide range of algorithms and options, and show it improves baseline performance on these queries for deployed systems as well, such as the Semantic Web Search engine FALCON-S and Yahoo! Web search. We further show that the use of Semantic Web inference seems to hurt performance, while the pseudo-relevance feedback increases performance in both cases, although not as much as actual relevance feedback. Lastly, our evaluation is the first rigorous 'Cranfield' evaluation of Semantic Web search.
机译:我们调查了使用语义Web数据来改进超文本Web搜索的可能性。特别是,我们使用相关性反馈在从链接数据语义网收集的数据与从超文本网收集的网页之间创建一个“虚拟循环”。先前的方法通常认为,在语义Web和超文本Web上进行搜索完全是完全不同的,在不同领域进行索引和搜索。传统上,相关性反馈改善了信息检索性能,但是相关性反馈通常用于改善单个数据集的排名。我们的新颖方法是使用超文本Web结果的相关性反馈来改进语义Web搜索,并使用语义Web的结果来改进超文本Web数据的检索。在这两种情况下,都基于从现实生活查询日志中选择并由人类法官检查的某些信息查询(抽象的概念,人物和地点)进行评估。我们通过广泛的算法和选项评估我们的工作,并表明它还改善了已部署系统的这些查询的基线性能,例如语义Web搜索引擎FALCON-S和Yahoo!。网络搜索。我们进一步表明,语义网推断的使用似乎会损害性能,而伪相关反馈在两种情况下均会提高性能,尽管不如实际相关反馈那么多。最后,我们的评估是对语义Web搜索的第一个严格的“ Cranfield”评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号