首页> 外文期刊>Journal of web semantics: >A hybrid approach to finding relevant social media content for complex domain specific information needs
【24h】

A hybrid approach to finding relevant social media content for complex domain specific information needs

机译:一种混合方法,用于查找复杂的领域特定信息需求的相关社交媒体内容

获取原文
获取原文并翻译 | 示例

摘要

While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage, and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval (or knowledge-aware search) that integrates ontology-driven query interpretation with synonym-based query expansion, and domain specific rules, to facilitate search. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: (1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and (2) a low-level CFG that enables interpretation of specific expressions that belong to such patterns. These low-level expressions occur as concepts from four different categories of data: (1) ontological concepts, (2) concepts in lexicons (such as emotions and sentiments), (3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and (4) domain specific expressions (such as date, time, interval, frequency, and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems.
机译:尽管现代语义搜索系统提供了改进经典的基于关键字的搜索的功能,但它们并不总是足够满足复杂领域特定信息的需求。例如,处方药滥用领域要求既了解本体概念又了解通常在本体模型中未建模的“可理解的构造”。这些可理解的结构传达了包括强度,频率,间隔,剂量和情感等概念的基本信息,这对于信息搜索者的整体需求可能很重要。在本文中,我们提出了一种用于领域特定信息检索(或知识知晓的搜索)的混合方法,该方法将本体驱动的查询解释与基于同义词的查询扩展和领域特定的规则集成在一起,以方便搜索。我们的框架基于无上下文语法(CFG),它定义了搜索系统可解释的结构的查询语言。语法提供了两个层次的语义解释:(1)顶层CFG,它有助于检索属于宽泛模板的各种文本模式;(2)下层CFG,其能够解释属于此类模式的特定表达。这些低级表达是来自四个不同类别的数据的概念:(1)本体概念,(2)词典中的概念(例如情感和情感),(3)词典中仅具有部分本体表示形式的概念,称为lexico-本体概念(例如副作用和给药途径(ROA)),以及(4)仅通过规则得出的域特定表达(例如日期,时间,间隔,频率和剂量)。我们的方法体现在称为PREDOSE的新型语义Web平台中,该平台为处方药滥用流行病学中的复杂领域特定信息需求提供搜索支持。与三个现有的搜索系统相比,我们的搜索框架被应用于超过100万个与药物滥用相关的网络论坛帖子的语料库时,可以有效地检索相关文档。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号