首页> 外文期刊>Journal of web semantics: >Building an effective and efficient background knowledge resource to enhance ontology matching
【24h】

Building an effective and efficient background knowledge resource to enhance ontology matching

机译:建立有效和高效的背景知识资源以增强本体匹配

获取原文
获取原文并翻译 | 示例

摘要

Ontology matching is critical for data integration and interoperability. Original ontology matching approaches relied solely on the content of the ontologies to align. However, these approaches are less effective when equivalent concepts have dissimilar labels and are structured with different modeling views. To overcome this semantic heterogeneity, the community has turned to the use of external background knowledge resources. Several methods have been proposed to select ontologies, other than the ones to align, as background knowledge to enhance a given ontology-matching task. However, these methods return a set of complete ontologies, while, in most cases, only fragments of the returned ontologies are effective for discovering new mappings. In this article, we propose an approach to select and build a background knowledge resource with just the right concepts chosen from a set of ontologies, which improves efficiency without loss of effectiveness. The use of background knowledge in ontology matching is a double-edged sword: while it may increase recall (i.e., retrieve more correct mappings), it may lower precision (i.e., produce more incorrect mappings). Therefore, we propose two methods to select the most relevant mappings from the candidate ones: (1) a selection based on a set of rules and (2) a selection based on supervised machine learning. Our experiments, conducted on two Ontology Alignment Evaluation Initiative (OAEI) datasets, confirm the effectiveness and efficiency of our approach. Moreover, the F-measure values obtained with our approach are very competitive to those of the state-of-the-art matchers exploiting background knowledge resources. (C) 2018 Elsevier B.V. All rights reserved.
机译:本体匹配对于数据​​集成和互操作性至关重要。原始的本体匹配方法仅依赖于本体的内容进行对齐。但是,当等效概念的标签不相同并且使用不同的建模视图进行结构化时,这些方法的效率较低。为了克服这种语义上的异质性,社区已转向使用外部背景知识资源。已经提出了几种方法来选择本体,而不是将要对齐的本体作为背景知识,以增强给定的本体匹配任务。但是,这些方法返回了一组完整的本体,而在大多数情况下,只有返回的本体的片段对发现新的映射有效。在本文中,我们提出了一种方法,该方法仅使用从一组本体中选择的正确概念来选择和构建背景知识资源,从而在不损失有效性的情况下提高了效率。在本体匹配中使用背景知识是一把双刃剑:虽然它可能会增加召回率(即检索更多正确的映射),但可能会降低精度(即产生更多不正确的映射)。因此,我们提出了两种方法来从候选者中选择最相关的映射:(1)基于规则集的选择和(2)基于监督机器学习的选择。我们在两个本体一致性评估计划(OAEI)数据集上进行的实验证实了该方法的有效性和效率。而且,通过我们的方法获得的F-measure值与利用背景知识资源的最新匹配器相比具有很大的竞争力。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号