首页> 外文期刊>Journal of Water Resources Planning and Management >Bottom-Up Generation of Water Demands to Preserve Basic Statistics and Rank Cross-Correlations of Measured Time Series
【24h】

Bottom-Up Generation of Water Demands to Preserve Basic Statistics and Rank Cross-Correlations of Measured Time Series

机译:自下而上的需水量生成以保留基本统计数据和测得时间序列的等级相关性

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel methodology for the generation of demand time series at water distribution network (WDN) users. After subdividing the day into an integer number of time steps with order of magnitude of 1 h, the methodology is based on two phases. First, it generates, for each user and for each time step of the day, demand time series of the first attempt, which are consistent with the measured time series in terms of mean, standard deviation, and skewness. This is done with a beta probability distribution with tunable bounds or with a gamma distribution with shift parameter. In the refinement phase, rank cross-correlations between users and at all temporal lags are imposed on the generated demand time series through a single Copula-based re-sort. The effectiveness of the methodology is proven in two real case studies with different numbers of users-namely, the literature case study of Milford, Ohio, and a novel Italian site. The demand time series obtained from the spatial aggregation of the generated user demand time series preserves very well mean and standard deviation of the measured aggregated demand time series. The preservation of skewness and temporal cross-correlations at all lags is very satisfactory. A procedure is also presented to reconcile the generated demand time series with demand pulses generated at fine time step, thus enabling reconstruction of demand at any time step.
机译:本文提出了一种新颖的方法,用于在配水网(WDN)用户处生成需求时间序列。将一天细分为数量级为1 h的整数个时间步长后,该方法基于两个阶段。首先,它为每个用户和一天中的每个时间步生成第一次尝试的需求时间序列,这与在均值,标准差和偏度方面与测得的时间序列一致。这是通过具有可调范围的beta概率分布或具有shift参数的gamma分布完成的。在优化阶段,通过单个基于Copula的重新排序,将用户之间以及所有时间延迟之间的等级互相关强加到生成的需求时间序列上。该方法的有效性已在两个具有不同用户数量的真实案例研究中得到了证明,即俄亥俄州米尔福德的文献案例研究和一个新颖的意大利站点。从生成的用户需求时间序列的空间聚合中获得的需求时间序列可以很好地保留测量的聚合需求时间序列的均值和标准偏差。在所有时滞上保持偏度和时间互相关是非常令人满意的。还提出了一种程序,以使所生成的需求时间序列与在精细时间步生成的需求脉冲一致,从而能够在任何时间步重建需求。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号