首页> 外文期刊>Journal of Volcanology and Geothermal Research2012V243-244NOCT,15 >Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations
【24h】

Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

机译:火山灰烟羽中的非平衡过程:3D多相流模拟的新见解

获取原文
获取原文并翻译 | 示例
           

摘要

In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 x 10(6) kg/s) and strong (mass eruption rate: 1.5 x 10(6) kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at least in the buoyant plume region, and allow to reckon a variable, effective entrainment coefficient with a mean value around 0.1 (consistently with laboratory experiments). For the strong plume, analysis of the results reveals that the two most critical assumptions of one-dimensional integral models are the self-similarity and the pressure equilibrium. In such a case, the plume appears to be controlled by the dynamics in the jet stage (below the buoyancy reversal) and by mesoscale voracity associated with the development of the umbrella. (C) 2016 Elsevier B.V. All rights reserved.
机译:在IAVCEI(国际地球内部火山学和化学协会)关于火山羽流模型比对的计划的框架内,我们讨论了使用多相流模型PDAC(热碎石弥散分析代码)进行的三维数值模拟。该模型通过采用非平衡欧拉-欧拉公式来描述火山和大气(没有风)和两个火山碎屑相的动力学。因此,气相和颗粒相被视为互穿流体,它们通过动量(阻力)和热交换相互作用。数值结果描述了弱羽(质量喷发速率:1.5 x 10(6)kg / s)和强羽(质量喷发速率:1.5 x 10(6)kg / s)的时空分布。这两个测试案例显示出显着不同的现象学,与大气分层,压缩性和浮力逆转机制的不同作用相关,反映在羽流,湍流涡流和大气环流的不同结构中。这也带来了湍流混合和大气夹带的不同速率。采用的多相流模型可以量化气体和颗粒之间的温度和速度差,包括沉降,湍流引起的优先浓度和热不平衡,它们是斯托克斯数的函数,即斯托克斯数与动平衡时间之比。湍流羽的特征性大涡旋转换时间。结果,大气中的粗灰的空间和时间分布与细灰的空间和时间分布明显不同,导致羽状形状的改变。最后,对三维数值结果进行了时间平均和水平切片平均,以便获得静止状态下羽流的一维图像。对于弱羽状流,结果至少在浮力羽状流区域中与一维模型一致,并且可以计算出平均值为0.1左右的可变有效夹带系数(与实验室实验一致)。对于强羽状流,对结果的分析表明,一维积分模型的两个最关键的假设是自相似性和压力平衡。在这种情况下,羽状流似乎受射流阶段(浮力反转以下)的动力学控制,并且受与伞形发育有关的中尺度孔隙度的控制。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号