首页> 外文期刊>Journal of Visual Languages & Computing >High-dimensional data visualization by interactive construction of low-dimensional parallel coordinate plots
【24h】

High-dimensional data visualization by interactive construction of low-dimensional parallel coordinate plots

机译:通过交互式构建低维平行坐标图来实现高维数据可视化

获取原文
获取原文并翻译 | 示例

摘要

Parallel coordinate plots (PCPs) are among the most useful techniques for the visualization and exploration of high-dimensional data spaces. They are especially useful for the representation of correlations among the dimensions, which identify relationships and interdependencies between variables. However, within these high-dimensional spaces, PCPs face difficulties in displaying the correlation between combinations of dimensions and generally require additional display space as the number of dimensions increases. In this paper, we present a new technique for high-dimensional data visualization in which a set of low-dimensional PCPs are interactively constructed by sampling user-selected subsets of the high-dimensional data space. In our technique, we first construct a graph visualization of sets of well correlated dimensions. Users observe this graph and are able to interactively select the dimensions by sampling from its cliques, thereby dynamically specifying the most relevant lower dimensional data to be used for the construction of focused PCPs. Our interactive sampling overcomes the shortcomings of the PCPs by enabling the visualization of the most meaningful dimensions (i.e., the most relevant information) from high-dimensional spaces. We demonstrate the effectiveness of our technique through two case studies, where we show that the proposed interactive low-dimensional space constructions were pivotal for visualizing the high-dimensional data and discovering new patterns. (C) 2017 Elsevier Ltd. All rights reserved.
机译:平行坐标图(PCP)是用于高维数据空间的可视化和探索的最有用的技术之一。它们对于表示维度之间的相关性尤其有用,这些维度可以识别变量之间的关系和相互依赖性。然而,在这些高维空间中,PCP在显示维组合之间的相关性方面面临困难,并且随着维数量的增加,通常需要额外的显示空间。在本文中,我们提出了一种用于高维数据可视化的新技术,其中通过对用户选择的高维数据空间子集进行采样,以交互方式构造一组低维PCP。在我们的技术中,我们首先构造一组高度相关的维的图形可视化。用户观察该图,并能够通过从其派系中进行采样来交互式地选择尺寸,从而动态地指定最相关的较低尺寸数据,以用于构建聚焦PCP。我们的交互式采样通过实现高维空间中最有意义的维度(即最相关的信息)的可视化,克服了PCP的缺点。我们通过两个案例研究证明了我们技术的有效性,其中我们证明了所提出的交互式低维空间构造对于可视化高维数据和发现新模式至关重要。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号