首页> 外文期刊>Journal of visual communication & image representation >Quality adaptive least squares trained filters for video compression artifacts removal using a no-reference block visibility metric
【24h】

Quality adaptive least squares trained filters for video compression artifacts removal using a no-reference block visibility metric

机译:使用无参考块可见性度量的质量自适应最小二乘训练滤波器,用于视频压缩伪像的去除

获取原文
获取原文并翻译 | 示例

摘要

Compression artifacts removal is a challenging problem because videos can be compressed at different qualities. In this paper, a least squares approach that is self-adaptive to the visual quality of the input sequence is proposed. For compression artifacts, the visual quality of an image is measured by a no-reference block visibility metric. According to the blockiness visibility of an input image, an appropriate set of filter coefficients that are trained beforehand is selected for optimally removing coding artifacts and reconstructing object details. The performance of the proposed algorithm is evaluated on a variety of sequences compressed at different qualities in comparison to several other de-blocking techniques. The proposed method outperforms the others significantly both objectively and subjectively.
机译:压缩伪影的去除是一个具有挑战性的问题,因为可以以不同的质量压缩视频。在本文中,提出了一种自适应于输入序列视觉质量的最小二乘法。对于压缩伪像,图像的视觉质量通过无参考块可见性度量来度量。根据输入图像的块状可见性,选择适当地预先训练的一组滤波器系数,以最佳地去除编码伪像并重建对象细节。与其他几种解块技术相比,该算法的性能是在以不同质量压缩的各种序列上进行评估的。所提出的方法在客观上和主观上都优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号