首页> 外文期刊>Journal of visual communication & image representation >Kernel-based feature extraction under maximum margin criterion
【24h】

Kernel-based feature extraction under maximum margin criterion

机译:最大余量准则下基于核的特征提取

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the problem of feature extraction for pattern classification applications. RELIEF is considered as one of the best-performed algorithms for assessing the quality of features for pattern classification. Its extension, local feature extraction (LFE), was proposed recently and was shown to outperform RELIEF. In this paper, we extend LFE to the nonlinear case, and develop a new algorithm called kernel LFE (KLFE). Compared with other feature extraction algorithms, KLFE enjoys nice properties such as low computational complexity, and high probability of identifying relevant features; this is because KLFE is a nonlinear wrapper feature extraction method and consists of solving a simple convex optimization problem. The experimental results have shown the superiority of KLFE over the existing algorithms.
机译:在本文中,我们研究了模式分类应用中的特征提取问题。 RELIEF被认为是评估模式分类特征质量的最佳算法之一。它的扩展,局部特征提取(LFE)是最近提出的,并且表现优于RELIEF。在本文中,我们将LFE扩展到非线性情况,并开发了一种称为内核LFE(KLFE)的新算法。与其他特征提取算法相比,KLFE具有计算复杂度低,识别相关特征的可能性高等优点。这是因为KLFE是一种非线性包装特征提取方法,它包含一个简单的凸优化问题。实验结果表明,KLFE优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号