首页> 外文期刊>Journal of visual communication & image representation >Saliency-guided compressive sensing approach to efficient laser range measurement
【24h】

Saliency-guided compressive sensing approach to efficient laser range measurement

机译:显着性引导压缩感测方法可实现有效的激光测距

获取原文
获取原文并翻译 | 示例

摘要

The acquisition of laser range measurements can be a time consuming process for situations where high spatial resolution is required. As such, optimizing the acquisition mechanism is of high importance for many range measurement applications. Acquiring such data through a dynamically small subset of measurement locations can address this problem. In such a case, the measured information can be regarded as incomplete, which necessitates the application of special reconstruction tools to recover the original data set. The reconstruction can be performed based on the concept of sparse signal representation. Recovering signals and images from their sub-Nyquist measurements forms the core idea of compressive sensing (CS). A new saliency-guided CS-based algorithm for improving the reconstruction of range image from sparse laser range measurements has been developed. This system samples the object of interest through an optimized probability density function derived based on saliency rather than a uniform random distribution. Particularly, we demonstrate a saliency-guided sampling method for simultaneously sensing and coding range image, which requires less than half the samples needed by conventional CS while maintaining the same reconstruction performance, or alternatively reconstruct range image using the same number of samples as conventional CS with a 16 dB improvement in signal-to-noise ratio. For example, to achieve a reconstruction SNR of 30 dB, the saliency-guided approach required 30% of the samples in comparison to the standard CS approach that required 90% of the samples in order to achieve similar performance.
机译:在需要高空间分辨率的情况下,激光测距的采集可能是一个耗时的过程。因此,对于许多距离测量应用而言,优化采集机制至关重要。通过动态小的测量位置子集获取此类数据可以解决此问题。在这种情况下,测得的信息可能被认为是不完整的,这需要使用特殊的重建工具来恢复原始数据集。可以基于稀疏信号表示的概念来执行重构。从次奈奎斯特测量中恢复信号和图像,构成了压缩感测(CS)的核心思想。已经开发了一种新的基于显着性CS的算法,用于改进从稀疏激光测距中重建测距图像。该系统通过基于显着性而非均匀随机分布得出的优化概率密度函数对感兴趣的对象进行采样。特别是,我们展示了一种用于同时感应和编码距离图像的显着性指导采样方法,该方法只需要不到常规CS所需样本的一半,同时还能保持相同的重建性能,或者使用与常规CS相同数量的样本重建距离图像信噪比提高了16 dB。例如,要实现30 dB的重建SNR,与需要90%样本的标准CS方法相比,采用显着性指导的方法需要30%的样本,以实现类似的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号