首页> 外文期刊>Journal of visual communication & image representation >Multiple kernel learning with NOn-conVex group spArsity
【24h】

Multiple kernel learning with NOn-conVex group spArsity

机译:使用NOn-conVex组spArsity进行多内核学习

获取原文
获取原文并翻译 | 示例

摘要

As the high-dimensional heterogeneous visual features extracted from images are intrinsically embedded in a non-linear space, some kernel methods such as SVM have been proposed to solve this problem. Since different kinds of heterogeneous features in images have different intrinsic discriminative powers for image understanding, how to enforce grouping sparsity penalty to effectively select out discriminative heterogeneous visual features is critical for image understanding. Most existing approaches are using a convex penalty for feature selection, which easily leads to inconsistent selection. To guarantee a consistent selection for heterogeneous features embedded in a non-linear space, this paper proposes a new approach called MKL-NOVA (Multiple Kernel Learning with NOn-conVex group spArsity). Because MKL-NOVA conducts a non-convex penalty for the selection of groups of features, it achieves the consistent selection. Furthermore, considering the contextual correlation between multi labels, sparse canonical correlation analysis is conducted to boost the image annotation performance by MKL-NOVA. We have demonstrated the superior performance of MKL-NOVA via two experiments in the paper. First, we showed that MKL-NOVA converges to the true underlying model by using a ground-truth-available generative-model simulation. Second, we compare the proposed MKL-NOVA and the state-of-the-art approaches which showed that MKL-NOVA achieved the best performance.
机译:由于从图像中提取的高维异构视觉特征固有地嵌入在非线性空间中,因此提出了一些内核方法(例如SVM)来解决此问题。由于图像中不同种类的异质性特征对于图像理解具有不同的固有判别能力,因此如何实施分组稀疏度惩罚以有效地选择区别性异质性视觉特征对于图像理解至关重要。现有的大多数方法都将凸惩罚用于特征选择,这很容易导致选择不一致。为了保证对嵌入非线性空间的异构特征的一致选择,本文提出了一种称为MKL-NOVA(带有NOn-conVex群spArsity的多核学习)的新方法。由于MKL-NOVA对特征组的选择进行非凸罚分,因此可以实现一致的选择。此外,考虑到多个标签之间的上下文相关性,通过MKL-NOVA进行稀疏规范相关性分析以提高图像注释性能。我们通过两个实验证明了MKL-NOVA的卓越性能。首先,我们证明了MKL-NOVA通过使用地面真实可用的生成模型仿真收敛到了真实的基础模型。其次,我们比较了提出的MKL-NOVA和最新方法,这些方法表明MKL-NOVA达到了最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号