首页> 外文期刊>Journal of visual communication & image representation >An effective 2-stage method for removing impulse noise in images
【24h】

An effective 2-stage method for removing impulse noise in images

机译:有效的两阶段消除图像脉冲噪声的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a robust 2-stage impulse noise removal system is proposed to remove impulse noise from extremely corrupted images. The contributions are in two-fold. First, a neuro-fuzzy based impulse noise detector (NFIDET) is introduced to identify the noisy pixels. NFIDET is a powerful noise detector that can handle image corruption even up to 90% with zero miss and false detection rate with a simple neuro-fuzzy structure. This is the best result among the other impulse noise detectors in the literature. Second, this paper presents a new approach for weight calculation of adaptive weighted mean filter by using robust statistical model. An adaptive robust weighted mean (ARWM) filter removes a detected noisy pixel by adaptively determining filtering window size and replacing a noisy pixel with the weighted mean of the noise-free pixels in its window. A Geman-McClure robust estimation function is used to estimate the weights of the pixels. Simulation results also show that the proposed robust filter substantially outperforms many other existing algorithms in terms of image restoration.
机译:在本文中,提出了一种鲁棒的两级脉冲噪声去除系统,以从极度破坏的图像中去除脉冲噪声。贡献是双重的。首先,引入了基于神经模糊的脉冲噪声检测器(NFIDET)来识别噪声像素。 NFIDET是一款功能强大的噪声检测器,具有简单的神经模糊结构,即使未命中率为零,错误检测率也可以处理高达90%的图像损坏。这是文献中其他脉冲噪声检测器中最好的结果。其次,本文提出了一种利用鲁棒统计模型进行自适应加权均值滤波器权值计算的新方法。自适应鲁棒加权均值(ARWM)滤波器通过自适应确定滤波窗口大小并将噪声像素替换为其窗口中无噪声像素的加权均值来去除检测到的噪声像素。 Geman-McClure鲁棒估计函数用于估计像素的权重。仿真结果还表明,所提出的鲁棒滤波器在图像恢复方面明显优于许多其他现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号