首页> 外文期刊>Journal of visual communication & image representation >On-line video object segmentation using illumination-invariant color-texture feature extraction and marker prediction
【24h】

On-line video object segmentation using illumination-invariant color-texture feature extraction and marker prediction

机译:使用照明不变颜色纹理特征提取和标记预测的在线视频对象分割

获取原文
获取原文并翻译 | 示例

摘要

A novel on-line video object segmentation scheme based on illumination-invariant color-texture feature extraction and marker prediction is proposed in this paper. First, the location of the object of interest is initialized based on user-specified markers. Superpixels are generated in the next available frame of the input video to extract the illumination-invariant color-texture features of the object of interest. The proposed object marker prediction scheme consists of estimating the user-specified markers and locating the object of interest in the next available frame via superpixel motion prediction using illumination invariant optical flow, marker superpixel candidate generation using short-term superpixel affinity, and maximum likelihood computation using long-term superpixel affinity. The experimental results obtained when the proposed method is applied to several challenging video clips demonstrate that the proposed approach is competitive with several other state-of-the-art methods, especially when the illumination and object motion change dramatically. (C) 2016 Elsevier Inc. All rights reserved.
机译:提出了一种基于照度不变的颜色纹理特征提取和标记预测的在线视频目标分割方案。首先,根据用户指定的标记初始化感兴趣对象的位置。在输入视频的下一个可用帧中生成超像素,以提取感兴趣对象的照明不变颜色纹理特征。所提出的目标标记预测方案包括估计用户指定的标记,并通过使用照明不变光流的超像素运动预测,使用短期超像素亲和力的标记超像素候选生成以及最大似然计算,在下一个可用帧中定位关注对象。使用长期的超像素亲和力。当将所提出的方法应用于几个具有挑战性的视频剪辑时获得的实验结果表明,所提出的方法与其他几种最新方法具有竞争性,尤其是在照明和对象运动发生显着变化时。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号