首页> 外文期刊>Journal of visual communication & image representation >A mixture model using Random Rotation Bounding Box to detect table region in document image
【24h】

A mixture model using Random Rotation Bounding Box to detect table region in document image

机译:使用随机旋转边界框检测文档图像中表格区域的混合模型

获取原文
获取原文并翻译 | 示例

摘要

Table detection in the document image is still a challenging problem due to the variety of table structures and the complexity of document layout. In this paper, we propose a novel method for detecting table regions by using a new shape which is called Random Rotation Bounding Box. This shape is used for illustration and description of the table regions. Based on it, our system performs the following three fundamental steps to detect the table zones: classification of the text and non-text elements in the document image, detection of the ruling-line tables, and identification of the non-ruling-line tables. Different from other methods, our approach can detect most kinds of tables with high precision even when it is skewed. Besides, the proposed method is also designed to fit in the document layout analysis system. Our algorithm has been tested on the two well-known, and a commercial datasets: ICDAR2013 table competition, UNLV, and Diotek. Experimental results on these databases show that our method is more robust and efficient than previous systems. (C) 2016 Elsevier Inc. All rights reserved.
机译:由于表格结构的多样性和文档布局的复杂性,文档图像中的表格检测仍然是一个具有挑战性的问题。在本文中,我们提出了一种通过使用一种称为随机旋转边界框的新形状来检测桌子区域的新方法。该形状用于表格区域的说明和描述。基于此,我们的系统执行以下三个基本步骤来检测表格区域:文档图像中文本和非文本元素的分类,标线表的检测以及标线表的标识。与其他方法不同,即使倾斜,我们的方法也可以高精度地检测大多数类型的表。此外,该方法还被设计为适合文档布局分析系统。我们的算法已在两个著名的商业数据集上进行了测试:ICDAR2013桌上竞赛,UNLV和Diotek。在这些数据库上的实验结果表明,我们的方法比以前的系统更加健壮和高效。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号