首页> 外文期刊>Journal of visual communication & image representation >A new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel function
【24h】

A new SVM-based relevance feedback image retrieval using probabilistic feature and weighted kernel function

机译:利用概率特征和加权核函数的基于SVM的相关反馈图像检索

获取原文
获取原文并翻译 | 示例

摘要

Relevance feedback (RF) is an effective approach to bridge the gap between low-level visual features and high-level semantic meanings in content-based image retrieval (CBIR). The support vector machine (SVM) based RF mechanisms have been used in different fields of image retrieval, but they often treat all positive and negative feedback samples equally, which will inevitably degrade the effectiveness of SVM-based RF approaches for CBIR. In fact, positive and negative feedback samples, different positive feedback samples, and different negative feedback samples all always have distinct properties. Moreover, each feedback interaction process is usually tedious and time-consuming because of complex visual features, so if too many times of iteration of feedback are asked, users may be impatient to interact with the CBIR system. To overcome the above limitations, we propose a new SVM-based RF approach using probabilistic feature and weighted kernel function in this paper. Firstly, the probabilistic features of each image are extracted by using principal components analysis (PCA) and the adapted Gaussian mixture models (AGMM) based dimension reduction, and the similarity is computed by employing Kullback-Leibler divergence. Secondly, the positive feedback samples and negative feedback samples are marked, and all feedback samples' weight values are computed by utilizing the samples-based Relief feature weighting. Finally, the SVM kernel function is modified dynamically according to the feedback samples' weight values. Extensive simulations on large databases show that the proposed algorithm is significantly more effective than the state-of-the-art approaches. (C) 2016 Elsevier Inc. All rights reserved.
机译:相关性反馈(RF)是一种有效的方法,可以弥补基于内容的图像检索(CBIR)中低级视觉特征和高级语义之间的差距。基于支持向量机(SVM)的RF机制已在图像检索的不同领域中使用,但它们通常会平等地对待所有正反馈样本和负反馈样本,这将不可避免地降低基于SVM的RF方法对CBIR的有效性。实际上,正反馈样本和负反馈样本,不同的正反馈样本和不同的负反馈样本都始终具有不同的属性。此外,由于复杂的视觉特征,每个反馈交互过程通常都很繁琐且耗时,因此,如果要求反馈的迭代次数过多,用户可能会急于与CBIR系统进行交互。为了克服以上限制,我们在本文中提出了一种使用概率特征和加权核函数的基于SVM的新RF方法。首先,使用主成分分析(PCA)和基于高斯混合模型(AGMM)的降维方法提取每个图像的概率特征,并利用Kullback-Leibler散度计算相似度。其次,标记正反馈样本和负反馈样本,并利用基于样本的救济特征加权来计算所有反馈样本的权重值。最后,根据反馈样本的权重值动态修改SVM内核功能。在大型数据库上进行的广泛仿真表明,所提出的算法比最新方法有效得多。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号