首页> 外文期刊>Journal of visual communication & image representation >Machine learning based fast H.264/AVC to HEVC transcoding exploiting block partition similarity
【24h】

Machine learning based fast H.264/AVC to HEVC transcoding exploiting block partition similarity

机译:利用基于机器学习的H.264 / AVC到HEVC的快速转码,利用块分区相似性

获取原文
获取原文并翻译 | 示例

摘要

Video transcoding is to convert one compressed video stream to another. In this paper, a fast H.264/AVC to High Efficiency Video Coding (HEVC) transcoding method based on machine learning is proposed by considering the similarity between compressed streams, especially the block partition correlations, to reduce the computational complexity. This becomes possible by constructing three-level binary classifiers to predict quad-tree Coding Unit (CU) partition in HEVC. Then, we propose a feature selection algorithm to get representative features to improve predication accuracy of the classification. In addition, we propose an adaptive probability threshold determination scheme to achieve a good trade-off between low coding complexity and high compression efficiency during the CU depth prediction in HEVC. Extensive experimental results demonstrate the proposed transcoder achieves complexity reduction of 50.2% and 49.2% on average under lowdelay P main and random access configurations while the rate distortion degradation is negligible. The proposed scheme is proved more effective as comparing with the state-of-the-art benchmarks. (C) 2016 Elsevier Inc. All rights reserved.
机译:视频转码是将一个压缩的视频流转换为另一个。本文提出了一种基于机器学习的快速H.264 / AVC到高效视频编码(HEVC)代码转换方法,该方法考虑了压缩流之间的相似性,尤其是块分区相关性,以降低计算复杂度。通过构造三级二进制分类器来预测HEVC中的四叉树编码单元(CU)分区,这成为可能。然后,我们提出了一种特征选择算法来获得代表性特征,以提高分类的预测准确性。此外,我们提出了一种自适应概率阈值确定方案,以在HEVC的CU深度预测期间实现低编码复杂度和高压缩效率之间的良好折衷。大量的实验结果表明,所提出的代码转换器在低延迟P主和随机访问配置下,平均复杂度降低了50.2%和49.2%,而速率失真的降低可以忽略不计。与最新的基准相比,该方案被证明更加有效。 (C)2016 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China|City Univ Wong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China;

    Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China;

    Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China;

    City Univ Wong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China|City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号