首页> 外文期刊>Journal of visual communication & image representation >A novel moving object segmentation framework utilizing camera motion recognition for H.264 compressed videos
【24h】

A novel moving object segmentation framework utilizing camera motion recognition for H.264 compressed videos

机译:利用相机运动识别技术对H.264压缩视频进行运动物体分割的新颖框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel coarse to fine moving object segmentation framework for H.264/AVC compressed videos. The proposed framework integrates the global motion estimation and global motion compensation steps in the segmentation pipeline unlike previous techniques which did not consider such an integration. The integration is based on testing for presence of global motion by classifying the interframe motion vectors into moving camera class and still camera class. The decision boundary separating these two classes is learnt from the training video data. The integration automates the moving object segmentation to be applicable for static, moving and combination of static/moving camera cases which to the best of our knowledge has not been carried out earlier. Further, a novel coarse segmentation technique is proposed by decomposing the inter-frame motion vectors into wavelet sub-bands and utilizing logical operations on LH, HL and HH sub-band wavelet coefficients. The premise is based on the fact that since the LH, HL and HH sub-bands contain the detail information pertaining to horizontal, vertical and diagonal moving blocks respectively, they can be exploited to identify the coarse moving boundaries. The coarse segmentation is fast in comparison to state-of-the-art coarse segmentation methods as demonstrated by our experiments. Finally, these coarse boundaries are modeled in an energy minimization framework and shown that by minimizing the energy using graph cut optimization the segmentation is refined to obtain the fine segmentation. The proposed framework is tested on a number of standard video sequences encoded with H.264/AVC JM encoder and comparison is carried out with state-of-the-art compressed domain moving object segmentation methods as well as with an existing state-of-the-art pixel domain method to establish and validate the proposed moving object segmentation framework. (C) 2016 Elsevier Inc. All rights reserved.
机译:本文为H.264 / AVC压缩视频提出了一种新颖的从粗到细的运动对象分割框架。所提出的框架在分割流水线中集成了全局运动估计和全局运动补偿步骤,这与之前没有考虑这种集成的技术不同。该集成基于通过将帧间运动矢量分类为运动相机类和静止相机类来测试是否存在全局运动。从训练视频数据中学习将这两类分开的决策边界。集成使移动对象分割自动化,从而适用于静态,移动以及静态/移动摄像机机壳的组合,而据我们所知,这还没有进行过。此外,通过将帧间运动矢量分解成小波子带并利用对LH,HL和HH子带小波系数的逻辑运算,提出了一种新颖的粗略分割技术。前提是基于这样一个事实,由于LH,HL和HH子带分别包含与水平,垂直和对角移动块有关的详细信息,因此可以利用它们来识别粗略的移动边界。如我们的实验所示,与最先进的粗分割方法相比,粗分割速度快。最后,在能量最小化框架中对这些粗略边界进行了建模,结果表明,通过使用图割优化来最小化能量,可以对分割进行细化以获得精细分割。该框架在使用H.264 / AVC JM编码器编码的许多标准视频序列上进行了测试,并使用最新的压缩域移动对象分割方法以及现有的压缩状态进行了比较。建立和验证提出的运动对象分割框架的最新像素域方法。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号