首页> 外文期刊>Journal of visual communication & image representation >A DAISY descriptor based multi-view stereo method for large-scale scenes
【24h】

A DAISY descriptor based multi-view stereo method for large-scale scenes

机译:基于DAISY描述符的大场景多视角立体方法

获取原文
获取原文并翻译 | 示例

摘要

Normalized cross-correlation (NCC) has been widely used as the matching cost function in multi-view stereo methods. However, NCC is vulnerable in the occlusion area and edge region of large-scale scenes because of color distortion and illumination changes. To alleviate the above problems, we present an improved patch based multi-view stereo method by introducing a photometric discrepancy function based on DAISY descriptor. In the patch extraction stage, a new corresponding point matching method based on the DAISY descriptor is proposed and the epipolar constraint is used to filter mismatched points. In the patch optimization stage, a photometric discrepancy function based on DAISY descriptor is proposed to measure the photo-consistency among reconstructed patches to identify reliable patches. Finally, dense patches are obtained by expanding sparse patches with global visibility information and patch optimization. Experimental results show that the proposed algorithm obtains better reconstruction results in occlusion and edge regions of large-scale scenes. (C) 2015 Elsevier Inc. All rights reserved.
机译:标准化互相关(NCC)已被广泛用作多视图立体方法中的匹配成本函数。但是,由于色彩失真和照明变化,NCC在大型场景的遮挡区域和边缘区域很脆弱。为了缓解上述问题,我们通过引入基于DAISY描述符的光度差异函数,提出了一种改进的基于补丁的多视图立体方法。在补丁提取阶段,提出了一种新的基于DAISY描述符的对应点匹配方法,并利用对极约束对不匹配点进行滤波。在补丁优化阶段,提出了一种基于DAISY描述符的光度差异函数,以测量重建补丁之间的光一致性,从而确定可靠的补丁。最后,通过使用全局可见性信息和补丁优化来扩展稀疏补丁,可以获得密集补丁。实验结果表明,该算法在大尺度场景的遮挡和边缘区域均具有较好的重建效果。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号