首页> 外文期刊>Journal of visual communication & image representation >Fast super-resolution algorithm using rotation-invariant ELBP classifier and hierarchical pattern matching
【24h】

Fast super-resolution algorithm using rotation-invariant ELBP classifier and hierarchical pattern matching

机译:使用旋转不变ELBP分类器和分层模式匹配的快速超分辨率算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a fast super-resolution (SR) algorithm using content-adaptive two-dimensional (2D) finite impulse response (FIR) filters based on a rotation-invariant classifier. The proposed algorithm consists of a learning stage and an inference stage. In the learning stage, we cluster a sufficient number of low-resolution (LR) and high-resolution (HR) patch pairs into a specific number of groups using the rotation-invariant classifier, and choose a specific number of dominant clusters. Then, we compute the optimal 2D FIR filter(s) to synthesize a high-quality HR patch from an LR patch per cluster, and finally store the patch-adaptive 2D FIR filters in a dictionary. Also, we present a smart hierarchical addressing method for effective dictionary exploration in the inference stage. In the inference stage, the ELBP of each input LR patch is extracted in the same way as the learning stage, and the best matched FIR filter(s) to the input LR patch is found from the dictionary by the hierarchical addressing. Finally, we synthesize the HR patch by using the optimal 2D FIR filter. The experimental results show that the proposed algorithm produces better HR images than the existing SR methods, while providing fast running time. (C) 2017 Elsevier Inc. All rights reserved.
机译:本文提出了一种基于旋转不变分类器的使用内容自适应二维(2D)有限冲激响应(FIR)滤波器的快速超分辨率(SR)算法。所提出的算法包括学习阶段和推理阶段。在学习阶段,我们使用旋转不变分类器将足够数量的低分辨率(LR)和高分辨率(HR)补丁对聚集到特定数量的组中,然后选择特定数量的优势群集。然后,我们计算最佳2D FIR滤波器以从每个群集的LR补丁合成高质量的HR补丁,最后将支持补丁的2D FIR滤波器存储在字典中。此外,我们提出了一种智能的分层寻址方法,可以在推理阶段有效地进行字典探索。在推断阶段,以与学习阶段相同的方式提取每个输入LR补丁的ELBP,并通过分层寻址从字典中找到与输入LR补丁最匹配的FIR滤波器。最后,我们使用最佳2D FIR滤波器合成了HR补丁。实验结果表明,与现有的SR方法相比,该算法能产生更好的HR图像,并且运行时间更快。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号