首页> 外文期刊>Journal of visual communication & image representation >High-dimensional feature extraction using bit-plane decomposition of local binary patterns for robust face recognition
【24h】

High-dimensional feature extraction using bit-plane decomposition of local binary patterns for robust face recognition

机译:使用局部二进制模式的位平面分解进行高维特征提取,以增强人脸识别能力

获取原文
获取原文并翻译 | 示例

摘要

Transforming an original image into a high-dimensional (HD) feature has been proven to be effective in classifying images. This paper presents a novel feature extraction method utilizing the HD feature space to improve the discriminative ability for face recognition. We observed that the local binary pattern can be decomposed into bit-planes, each of which has scale-specific directional information of the face image. Each bit-plane not only has the inherent local-structure of the face image but also has an illumination robust characteristic. By concatenating all the decomposed bit-planes, we generate an HD feature vector with an improved discriminative ability. To reduce the computational complexity while preserving the incorporated local structural information, a supervised dimension reduction method, the orthogonal linear discriminant analysis, is applied to the HD feature vector. Extensive experimental results show that existing classifiers with the proposed feature outperform those with other conventional features under various illumination, pose, and expression variations. (C) 2017 Elsevier Inc. All rights reserved.
机译:已经证明将原始图像转换为高维(HD)功能可以有效地对图像进行分类。本文提出了一种利用高清特征空间提高人脸识别能力的新颖特征提取方法。我们观察到局部二进制模式可以分解为位平面,每个位平面都具有面部图像的比例特定方向信息。每个位平面不仅具有面部图像的固有局部结构,而且具有照明鲁棒性。通过级联所有分解后的位平面,我们生成具有改进判别能力的HD特征向量。为了在保留合并的局部结构信息的同时降低计算复杂度,将有监督的降维方法(正交线性判别分析)应用于高清特征向量。大量的实验结果表明,在各种光照,姿势和表情变化下,具有拟议特征的现有分类器优于具有其他常规特征的分类器。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号