首页> 外文期刊>Journal of visual communication & image representation >Edited nearest neighbour for selecting keyframe summaries of egocentric videos
【24h】

Edited nearest neighbour for selecting keyframe summaries of egocentric videos

机译:编辑最近的邻居,以选择以自我为中心的视频的关键帧摘要

获取原文
获取原文并翻译 | 示例

摘要

A keyframe summary of a video must be concise, comprehensive and diverse. Current video summarisation methods may not be able to enforce diversity of the summary if the events have highly similar visual content, as is the case of egocentric videos. We cast the problem of selecting a keyframe summary as a problem of prototype (instance) selection for the nearest neighbour classifier (1-nn). Assuming that the video is already segmented into events of interest (classes), and represented as a dataset in some feature space, we propose a Greedy Tabu Selector algorithm (GTS) which picks one frame to represent each class. An experiment with the UT (Egocentric) video database and seven feature representations illustrates the proposed keyframe summarisation method. GTS leads to improved match to the user ground truth compared to the closest-to-centroid baseline summarisation method. Best results were obtained with feature spaces obtained from a convolutional neural network (CNN).
机译:视频的关键帧摘要必须简洁,全面且多样化。如果事件具有高度相似的视觉内容(例如以自我为中心的视频),则当前的视频摘要方法可能无法强制摘要的多样性。我们将选择关键帧摘要的问题作为最近邻居分类器(1-nn)的原型(实例)选择问题。假设视频已被分割成感兴趣的事件(类),并在某些特征空间中表示为数据集,我们提出一种贪婪的禁忌选择器算法(GTS),该算法选择一帧代表每个类。 UT(以自我为中心)视频数据库和七个特征表示的实验说明了所提出的关键帧汇总方法。与最接近质心的基线汇总方法相比,GTS可以改善与用户基本事实的匹配。从卷积神经网络(CNN)获得的特征空间获得了最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号