首页> 外文期刊>Journal of visual communication & image representation >Learning adaptively windowed correlation filters for robust tracking
【24h】

Learning adaptively windowed correlation filters for robust tracking

机译:学习自适应窗口相关滤波器以实现强大的跟踪

获取原文
获取原文并翻译 | 示例

摘要

Visual tracking is a fundamental component for high-level video understanding problems such as motion analysis, event detection and action recognition. Recently, Discriminative Correlation Filters (DCF) have achieved enormous popularity in the tracking community due to high computational efficiency and fair robustness. However, the underlying boundary effect of DCF leads to a very restricted target search region at the detection step. Generally, a larger search area is adopted to overcome this disadvantage. Such an expansion of search area usually includes substantial amount of background information which will contaminate the tracking model in realist tracking scenarios. To alleviate this major drawback, we propose a generic DCF tracking framework which suppresses background information and highlights the foreground object with an object likelihood map computed from the color histograms. This object likelihood map is merged with the cosine window and then integrated into the DCF formulation. Therefore, DCF are less burdened in the training step by focusing more on pixels with higher object likelihood probability. Extensive experiments on the OTB50 and OTB100 benchmarks demonstrate that our adaptively windowed tracking framework can be combined with many DCF trackers and achieves significant performance improvement.
机译:视觉跟踪是高级视频理解问题的基本组成部分,例如运动分析,事件检测和动作识别。最近,由于高计算效率和合理的鲁棒性,判别相关滤波器(DCF)在跟踪社区中获得了极大的普及。然而,DCF的潜在边界效应导致在检测步骤中目标搜索区域非常受限。通常,采用较大的搜索区域来克服该缺点。搜索区域的这种扩展通常包括大量的背景信息,这些背景信息将在现实的跟踪场景中污染跟踪模型。为了缓解这一主要缺点,我们提出了一种通用的DCF跟踪框架,该框架可抑制背景信息并使用根据颜色直方图计算出的对象似然图来突出显示前景对象。该对象似然图与余弦窗口合并,然后集成到DCF公式中。因此,通过将更多的注意力集中在具有较高对象似然概率的像素上,DCF在训练步骤中的负担较小。在OTB50和OTB100基准测试中进行的大量实验表明,我们的自适应窗口跟踪框架可以与许多DCF跟踪器结合使用,并且可以显着提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号