首页> 外文期刊>Journal of visual communication & image representation >On Fisher vector encoding of binary features for video face recognition
【24h】

On Fisher vector encoding of binary features for video face recognition

机译:用于视频人脸识别的二进制特征的Fisher向量编码

获取原文
获取原文并翻译 | 示例

摘要

Several approaches have been proposed for face recognition in videos. Fisher vector (FV) encoding of local Scale Invariant Feature Transforms (SIFT) is among the best performing ones. Aiming at speed up the computation time of this approach, a method based on FV encoding of binary features was recently introduced. By using Binary Robust Independent Elementary Features (BRIEF), this method gained in efficiency but lost in accuracy. FV representation of binary features demands appropriated mathematical tools, which are not as easy available as for continuous features. This paper introduces a new way for obtaining FV encoding of binary features that is still efficient and also accurate. We show that BRIEF combined with FV are discriminative enough, and provide as good performance as the one obtained by using SIFT features for video face recognition. Besides, we discuss several insights and promising lines of future work in regard to FV encoding of binary features.
机译:已经提出了几种用于视频中的面部识别的方法。局部尺度不变特征变换(SIFT)的Fisher向量(FV)编码是性能最好的一种。为了加快该方法的计算时间,近来提出了一种基于二进制特征的FV编码的方法。通过使用二进制鲁棒独立基本特征(BRIEF),此方法获得了效率,但准确性下降。二进制特征的FV表示需要适当的数学工具,这些工具不像连续特征那样容易获得。本文介绍了一种获得二进制特征的FV编码的新方法,该方法仍然有效且准确。我们表明,与FV结合使用的Brief具有足够的判别力,并提供与使用SIFT功能进行视频人脸识别所获得的性能一样好的性能。此外,我们讨论了关于二进制特征的FV编码的一些见解和有前途的未来工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号