首页> 外文期刊>Journal of visual communication & image representation >A novel statistical model for content-based stereo image retrieval in the complex wavelet domain
【24h】

A novel statistical model for content-based stereo image retrieval in the complex wavelet domain

机译:复杂小波域中基于内容的立体图像检索的新统计模型

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new stereo image (SI) retrieval method based on a statistical model of complex wavelet coefficients subbands. In this context, a Gaussian copula-based multivariate model is used to capture the dependence between complex wavelet coefficients of both left and right images, and a non-Gaussian univariate model is used to characterize the statistical behavior of the disparity map. Thanks to its flexibility, the copula tool allows us to choose several marginal densities while keeping the multivariate properties. Features are extracted by estimating parameters for both multivariate and univariate models. Finally, a weighted Jeffrey divergence (JD) is used as a similarity measurement between the underlying models. Experimental results on a stereo image database demonstrate the performance of the proposed method in terms of the retrieval rates as well as the computational time.
机译:本文提出了一种基于复杂小波系数子带统计模型的立体图像(SI)检索方法。在这种情况下,使用基于高斯copula的多元模型来捕获左右图像的复数小波系数之间的相关性,并使用非高斯单变量模型来表征视差图的统计行为。由于其灵活性,copula工具使我们可以选择几种边际密度,同时保持多元属性。通过估计多变量和单变量模型的参数来提取特征。最后,将加权的杰弗里散度(JD)用作基础模型之间的相似性度量。在立体图像数据库上的实验结果证明了该方法在检索率和计算时间方面的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号