首页> 外文期刊>Journal of visual communication & image representation >Diverse receptive field network with context aggregation for fast object detection
【24h】

Diverse receptive field network with context aggregation for fast object detection

机译:具有快速对象检测的不同接收现场网络,具有上下文聚合

获取原文
获取原文并翻译 | 示例

摘要

Current context-utilizing detectors are all based on two-stage approaches. However, their computational efficiency and context quality extremely depend on the accuracy of proposal-generating methods, which limits their performance and makes them hardly perform real-time detection. In this work, we present a context-exploited method that integrates features in different receptive fields to obtain contextual representation. Based on this idea, we put forward the multi-branch diverse receptive field modules (DRF modules) and their design principles to encode context. To further utilize contextual information for fast object detection, we propose a one-stage diverse receptive field network (DRFNet). In DRFNet, the DRF modules are first applied to capture rich context as the basis, then a parallel structure is constructed to exploit the context at different scales along with DRF modules. Comprehensive experiments indicate that the context introduced by our methods improves the detection performance and DRFNet achieves a good trade-off between speed and accuracy. (C) 2020 Published by Elsevier Inc.
机译:目前的上下文使用探测器都基于两级方法。然而,它们的计算效率和上下文质量极大地依赖于提案制作方法的准确性,这限制了它们的性能并使它们几乎不会执行实时检测。在这项工作中,我们提出了一种上下文解放的方法,该方法集成了不同接收字段中的功能来获取上下文表示。基于此思想,我们提出了多分支多样化现场模块(DRF模块)及其设计原则来编码上下文。为了进一步利用用于快速对象检测的上下文信息,我们提出了一个单级不同的接收现场网络(DRFNET)。在DRFNET中,首先应用DRF模块以捕获丰富的上下文,然后构建并行结构以利用不同尺度的上下文以及DRF模块。综合实验表明,我们的方法引入的上下文提高了检测性能,DRFNET在速度和准确性之间实现了良好的权衡。 (c)2020由elsevier公司发布

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号