首页> 外文期刊>Journal of visual communication & image representation >Weakly supervised instance segmentation using multi-stage erasing refinement and saliency-guided proposals ordering
【24h】

Weakly supervised instance segmentation using multi-stage erasing refinement and saliency-guided proposals ordering

机译:使用多级擦除细化和显着指导提案订购的弱监督实例分割

获取原文
获取原文并翻译 | 示例

摘要

Weakly supervised instance segmentation is a new research topic in the field of computer vision. Compared with fully supervised instance segmentation, weakly supervised methods use weaker data annotations such as points, scribbles or class labels which are easy to obtain. Among these annotations, image-level instance segmentation using only class labels as supervision is the most challenging task. In this paper, we propose a novel weakly supervised instance segmentation framework using a multi-stage erasing refinement method and a saliency-guided proposals ordering method. Firstly, the multi-stage erasing refinement method is exploited to enhance the instance representation by iteratively discovering separate object-related regions, so as to obtain more complete discriminative regions. Then, the saliency-guided proposals ordering method utilizes the saliency map to alleviate the background noise and better select the object proposals for generating the instance segmentation result. Experimental results on the PASCAL VOC 2012 dataset and the COCO dataset demonstrate that our framework achieves superior performance compared with the state-of-the-art weakly supervised instance segmentation models and the ablation study shows the effectiveness of the proposed two methods.
机译:弱势监督的实例分割是计算机愿景领域的新研究主题。与完全监督的实例分段相比,弱监督方法使用较弱的数据注释,例如易于获得的点,涂鸦或类标签。在这些注释中,仅使用类标签作为监督的图像级实例分段是最具挑战性的任务。在本文中,我们使用多级擦除细化方法和显着引导的提议订购方法提出了一种新的弱监督实例分割框架。首先,利用多级擦除改进方法来通过迭代地发现单独的对象相关区域来增强实例表示,以便获得更完整的鉴别区域。然后,显着引导的提议订购方法利用显着图来缓解背景噪声,并更好地选择用于生成实例分段结果的对象提案。 Pascal VOC 2012年数据集和Coco DataSet的实验结果表明,与最先进的弱监督实例分割模型相比,我们的框架实现了卓越的性能,并且消融研究表明了提出的两种方法的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号