首页> 外文期刊>Journal of visual communication & image representation >Multi-scale active patches fusion based on spatiotemporal LBP-TOP for micro-expression recognition
【24h】

Multi-scale active patches fusion based on spatiotemporal LBP-TOP for micro-expression recognition

机译:基于Spatiotemporal LBP-Top的多尺度有源补丁融合,用于微表达识别

获取原文
获取原文并翻译 | 示例

摘要

Micro-expressions are spontaneous emotions appearing on a face that is hard to conceal and thus making them different from normal facial expressions both in duration and subtlety. This paper investigates a challenging issue in micro-expression, where not all facial regions contribute equally to effective representation. Consequently, we proposed a multi-scale active patches fusion-based spatiotemporal LBP-TOP descriptor that considers the active contributions for different region area in faces. For the feature procedure, we exploit the average value of all patches under each scale to obtain the threshold that selectively fuses the local and global features. On the other hand, an improved weighted sparse representation based dual augmented Lagrange multiplier is adopted for the classification to remit the problem of sparse coefficients obtained by the traditional sparse representation algorithm. We conduct comprehensive experiments on CASME II and SAMM datasets and the accuracies respectively reach 77.30% and 58.82% using LOSO cross-validation. (C) 2020 Elsevier Inc. All rights reserved.
机译:微表达是出现在难以隐藏的脸上的自发情绪,从而使它们与持续时间和微妙的正常面部表情不同。本文调查了微观表达的具有挑战性的问题,而不是所有面部区域同样贡献有效的代表性。因此,我们提出了一种基于多标准的Spatiotemporal LBP-Top-Top描述符,其考虑了面部的不同区域区域的有源贡献。对于特征过程,我们利用每种比例下的所有修补程序的平均值,以获得选择性地融合本地和全局功能的阈值。另一方面,采用了基于改进的基于加权的双增强拉格朗日乘法器来分类以汇率通过传统稀疏表示算法获得的稀疏系数的问题。我们对Casme II和SAMM数据集进行综合实验,使用LOSO交叉验证分别达到77.30%和58.82%的准确性。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号