首页> 外文期刊>Journal of visual communication & image representation >A novel natural language steganographic framework based on image description neural network
【24h】

A novel natural language steganographic framework based on image description neural network

机译:基于图像描述神经网络的新型自然语言隐写框架

获取原文
获取原文并翻译 | 示例

摘要

It is a challenge to conduct natural language steganography on Online interactive platforms such as photo-sharing websites since the stego texts should be consistent with the content of the images. In this paper, a novel natural language steganographic framework based on an end-to-end generative network is proposed. A Convolution Neural Network (CNN) combined with Long Short-Term Memory (LSTM) is trained to generate stego descriptions. Word by Word Hiding (WWH) and Sentence by Sentence Hiding (SSH) schemes are proposed to achieve various embedding capacity under the premise of sharing model between the sender and the receiver. Furthermore, a blind extraction scheme called Hash Hiding (HH) is proposed in case that the model is unavailable for data extraction. Comparative experiments show the superiority of the proposed framework. It is verified that the proposed framework is an effective carrier-less steganographic framework with competitive embedding capacity, considerable text quality, and good reversibility. (C) 2019 Elsevier Inc. All rights reserved.
机译:在在线交互平台上进行自然语言隐写性,因为STEGO文本应该与图像的内容一致,因此是在线交互平台上进行自然语言隐性的挑战。本文提出了一种基于端到端生成网络的新型自然语言隐写框架。卷积与长短期存储器(LSTM)结合的卷积神经网络(CNN)以产生SEGO描述。通过单词隐藏(WWH)和句子隐藏(SSH)方案的单词,以实现在发件人和接收者之间共享模型的前提下实现各种嵌入能力。此外,在模型对于数据提取不可用的情况下,提出了一种称为哈希掩藏(HH)的盲提取方案。比较实验表明了所提出的框架的优越性。验证所提出的框架是一种有效的载体的书签框架,具有竞争性的嵌入能力,相当大的文本质量和良好的可逆性。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号