首页> 外文期刊>Journal of visual communication & image representation >Iterative fusion convolutional neural networks for classification of optical coherence tomography images
【24h】

Iterative fusion convolutional neural networks for classification of optical coherence tomography images

机译:光学相干断层扫描图像分类的迭代融合卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

Optical coherence tomography (OCT) can achieve the high-resolution 3D tomography imaging of the retina, which is crucial for the diagnosis of retinal diseases. Currently, the classification of retinal OCT images is mainly conducted by ophthalmologists, which is time consuming and subjective. In this paper, we propose an iterative fusion convolutional neural network (IFCNN) method for the automatic classification of retinal OCT image. In the convolutional neural network (CNN), different convolutional layers contain feature information from different scales. Therefore, the proposed network adopts an iterative fusion strategy, which iteratively combines features in current convolutional layer with those of all previous layers in the CNN network, and thus can jointly utilize the features of different convolutional layers to achieve accurate classification of OCT images. Experimental results on a real retinal OCT dataset and a musculoskeletal radiographs dataset demonstrate the superiority of the proposed method over the traditional CNN and several well-known OCT classification methods. (C) 2019 Elsevier Inc. All rights reserved.
机译:光学相干断层扫描(OCT)可以实现视网膜的高分辨率3D断层扫描成像,这对于视网膜疾病的诊断至关重要。目前,视网膜OCT图像的分类主要由眼科医生进行,这是耗时和主观的。在本文中,我们提出了一种迭代融合卷积神经网络(IFCNN)方法,用于自动分类视网膜OCT图像。在卷积神经网络(CNN)中,不同的卷积层包含来自不同尺度的特征信息。因此,所提出的网络采用迭代融合策略,其与CNN网络中的所有先前层中的那些相结合的迭代融合策略,因此可以共同利用不同卷积层的特征来实现OCT图像的准确分类。实验结果对真正的视网膜OCT数据集和肌肉骨骼射线照相数据集证明了在传统CNN和几种众所周知的OCT分类方法中提出的方法的优越性。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号