首页> 外文期刊>Journal of visual communication & image representation >3D human pose estimation from range images with depth difference and geodesic distance
【24h】

3D human pose estimation from range images with depth difference and geodesic distance

机译:3D从范围图像的人类姿势估计,深度差异和测地距

获取原文
获取原文并翻译 | 示例

摘要

Depth difference, as a popularly used feature for characterizing pairwise pixels of range images, fails to precisely capture skeleton joints when human body possesses a wild and complicated articulation. As the geodesic distance of pairwise pixels is able to present a global connected property and adjacent pixels often belong to the same body component, we propose an effective and efficient framework for pose estimation from range images. Firstly, all the pixels of a range image are grouped into superpixels using an improved Simple Linear Iterative Clustering algorithm. Secondly, those superpixels are labelled as the components of a human body using the hybrid feature. Thirdly, componentwise cluster feature extraction is undertaken on skeleton joints of body components with K-means clustering algorithm. Finally, the feature points of each component are then stacked as a compact representation of human poses and mapped to the skeleton joints of a human body. Experimental results demonstrate that the proposed framework outperforms several state-of-the-art pose estimation methods. (C) 2019 Elsevier Inc. All rights reserved.
机译:深度差异,作为用于表征范围图像的成对像素的普遍使用的特征,当人体具有野外和复杂的关节时,不能精确地捕获骨架关节。随着成对像素的测量距离能够呈现全局连接的属性,并且相邻像素通常属于相同的主体组件,我们提出了一种从范围图像的姿势估计的有效和有效的框架。首先,使用改进的简单线性迭代聚类算法将范围图像的所有像素分组成超像素。其次,使用混合特征将这些超像素标记为人体的组分。第三,通过K-means聚类算法对身体组件的骨架关节进行组件群集特征提取。最后,然后堆叠每个部件的特征点作为人体姿势的紧凑型表示,并映射到人体的骨架关节。实验结果表明,所提出的框架优于几种最先进的姿势估算方法。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号