首页> 外文期刊>Journal of visual communication & image representation >Benchmarking deep learning techniques for face recognition
【24h】

Benchmarking deep learning techniques for face recognition

机译:对深度学习技术进行人脸识别基准测试

获取原文
获取原文并翻译 | 示例

摘要

Recent progresses in Convolutional Neural Networks (CNNs) and GPUs have greatly advanced the state-of-the-art performance for face recognition. However, training CNNs for face recognition is complex and time-consuming. Multiple factors need to be considered: deep learning frameworks, GPU platforms, deep network models, training datasets and test datasets. The deep models under different frameworks may perform differently. Based on this concern, we compare three deep learning frameworks and benchmark the performance of different CNN models on five GPU platforms. The scalability issue is also explored. Our findings can help researchers select appropriate face recognition models, deep learning frameworks, GPU platforms, and training datasets for their face recognition tasks. (C) 2019 Elsevier Inc. All rights reserved.
机译:卷积神经网络(CNN)和GPU的最新进展大大提高了人脸识别的最新性能。但是,训练CNN进行面部识别非常复杂且耗时。需要考虑多个因素:深度学习框架,GPU平台,深度网络模型,训练数据集和测试数据集。不同框架下的深层模型可能会有不同的表现。基于这种关注,我们比较了三种深度学习框架,并在五个GPU平台上对不同CNN模型的性能进行了基准测试。还探讨了可伸缩性问题。我们的发现可以帮助研究人员为他们的面部识别任务选择合适的面部识别模型,深度学习框架,GPU平台和训练数据集。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号