首页> 外文期刊>Journal of visual communication & image representation >Salient object detection using background subtraction, Gabor filters, objectness and minimum directional backgroundness
【24h】

Salient object detection using background subtraction, Gabor filters, objectness and minimum directional backgroundness

机译:使用背景减法,Gabor滤波器,物体性和最小定向背景性进行显着物体检测

获取原文
获取原文并翻译 | 示例

摘要

Salient object detection is the process of identifying essential objects in an image. This paper solves this problem using background subtraction, Gabor filters, minimum directional backgroundness, and objectness. The first step is to calculate a backgroundness score for each region by calculating the difference between the feature vector of image boundary and image regions. This backgroundness map is then used for calculating the minimum directional background difference. The image is segmented using Gabor filters, and then the objectness criterion is used to choose the segment containing the salient object. The normalized foreground saliency map is then used to refine the selected segment.Further enhancement of this intermediate output is done using morphological operations, and boundary correction is done using the method of lazy snapping. The algorithm is tested on eight publicly available datasets and is compared against five algorithms. The performance is evaluated by PR-curve, F-Measure curve, and Mean Absolute Error. (C) 2019 Elsevier Inc. All rights reserved.
机译:显着物体检测是识别图像中必要物体的过程。本文使用背景减法,Gabor滤波器,最小定向背景和目标来解决此问题。第一步是通过计算图像边界和图像区域的特征向量之间的差异来计算每个区域的背景度得分。然后将该背景图用于计算最小定向背景差。使用Gabor滤波器对图像进行分割,然后使用客观性标准选择包含显着对象的部分。然后使用归一化的前景显着性图来细化所选的片段。使用形态学运算来进一步增强此中间输出,并使用惰性捕捉的方法来进行边界校正。该算法在八个公开可用的数据集上进行了测试,并与五个算法进行了比较。通过PR曲线,F测量曲线和平均绝对误差来评估性能。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号