首页> 外文期刊>Journal of visual communication & image representation >Lossless compression codec of aurora spectral data using hybrid spatial-spectral decorrelation with outlier recognition
【24h】

Lossless compression codec of aurora spectral data using hybrid spatial-spectral decorrelation with outlier recognition

机译:混合空间光谱去相关和离群值识别的极光光谱数据无损压缩编解码器

获取原文
获取原文并翻译 | 示例

摘要

Aurora spectral data, the particular hyperspectral data of auroral spectra, have an irreplaceable research value in bridging the gap between solar activity and terrestrial evolution. Their requirement for high volume storage and real-time transmission had been a great challenge until we proposed a CPU paralleled and online-biprediction-based method. As it is no longer applicable because of the recent spectrograph reassembling, this paper presents a replacement strategy combines the unidirectional predictor with the entropy coder of the other dimension, as well as with using smoothing and outlier recognition. The hybrid encoders of Spat-SPCC and Spec-SPCC are developed distinguished by their respective prediction direction. Spat-SPCC tuned on one-day trial data is used for its better capability for compression, in the further comparison with various classical algorithms, it achieves the top-ranking compression performance and has the average processing time of 1 s per file so that its availability for the practical applications is validated. (C) 2019 Published by Elsevier Inc.
机译:极光光谱数据,即极光光谱的特定高光谱数据,在弥合太阳活动与地面演化之间的差距方面具有不可替代的研究价值。在我们提出一种基于CPU并行和基于在线预测的方法之前,他们对大容量存储和实时传输的要求一直是一个巨大的挑战。由于由于最近的光谱仪重组而不再适用,因此本文提出了一种替代策略,该策略将单向预测器与其他维度的熵编码器结合在一起,并使用平滑和离群值识别。 Spat-SPCC和Spec-SPCC的混合编码器通过各自的预测方向得以区分。 Spat-SPCC在一天的试用数据上进行了调整,具有更好的压缩能力,与各种经典算法进行了进一步的比较,它达到了顶级的压缩性能,每个文件的平均处理时间为1 s,因此其实际应用的可用性已得到验证。 (C)2019由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号