首页> 外文期刊>Journal of visual communication & image representation >Scene graph captioner: Image captioning based on structural visual representation
【24h】

Scene graph captioner: Image captioning based on structural visual representation

机译:场景图字幕:基于结构视觉表示的图像字幕

获取原文
获取原文并翻译 | 示例

摘要

While deep neural networks have recently achieved promising results on the image captioning task, they do not explicitly use the structural visual and textual knowledge within an image. In this work, we propose the Scene Graph Captioner (SGC) framework for the image captioning task, which captures the comprehensive structural semantic of visual scene by explicitly modeling objects, attributes of objects, and relationships between objects. Firstly, we develop an approach to generate the scene graph by learning individual modules on the large object, attribute and relationship datasets. Then, SGC incorporates high-level graph information and visual attention information into a deep captioning framework. Specifically, we propose a novel framework to embed a scene graph into the structural representation, which captures the semantic concepts and the graph topology. Further, we develop the scene-graph-driven method to generate the attention graph by exploiting high internal homogeneity and external inhomogeneity among the nodes in the scene graph. Finally, a LSTM-based framework translates these information into text. We evaluate the proposed framework on a held-out MSCOCO dataset. (C) 2018 Elsevier Inc. All rights reserved.
机译:尽管深度神经网络最近在图像字幕任务上取得了可喜的成果,但它们并未明确使用图像中的结构性视觉和文字知识。在这项工作中,我们提出了用于图像标题任务的“场景图形标题”(SGC)框架,该框架通过显式建模对象,对象属性以及对象之间的关系来捕获视觉场景的全面结构语义。首先,我们开发了一种通过学习大型对象,属性和关系数据集上的各个模块来生成场景图的方法。然后,SGC将高级图形信息和视觉注意信息合并到深度字幕框架中。具体来说,我们提出了一种新颖的框架,可将场景图嵌入结构表示中,以捕获语义概念和图拓扑。此外,我们开发了场景图驱动方法,通过利用场景图中节点之间的高内部同质性和外部非均质性来生成注意力图。最后,基于LSTM的框架将这些信息转换为文本。我们在保留的MSCOCO数据集上评估提出的框架。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号